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Section 1 - Abstract 
Of all the major competitive sporting events occurring on an annual basis, tennis is 

arguable one of the best suited for advanced analytical analysis due to its large amount 

of data generated on a per-match basis . To better understand the factors involved in 1

what determines a winner in a given tennis match, chronological data across a vast 

recorded match history is required. 


This study aims to identify the highest-contributing attributes of an Association of 

Tennis Professionals (ATP) winner’s performance for the years 2000 to 2022. The study 

is aimed at tennis fans and sports betting enthusiasts looking to gain an understanding 

of a player’s performance from a list of hundreds of ATP-registered players. In addition 

to standard match data available via public repositories, the study will attempt to 

engineer features for modelling pertaining to player matchups, environmental 

scenarios, and tournament-specific performance.


The data will be modelled and evaluated using several random forests algorithms. 

Baseline accuracy will be established by a default random forest, accompanied by 

several tuned random forests, and a naive Bayes classifier. Lastly, the models will be 

evaluated against one another for model-specific accuracy.


 Tandon, K. (2020, January 17). The role of analytics in tennis is on a long, slow rise. Tennis.com. Retrieved 1

December 18, 2022, from https://www.tennis.com/news/articles/the-role-of-analytics-in-tennis-is-on-a-long-
slow-rise
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Section 2 - Data Description and Methodology 
	 The data under study consists of 22 comma-separated value files tracking ATP-

level tennis matches on an annual basis sourced by Jeff Sackmann . The files contain 2

information about ATP players, including their IDs, names, hand preferences, birth 

dates, countries of origin, and heights. Ranking information is also included, with data 

available from 2000 to the present. Results and statistics for ATP matches are included 

in separate files for each season, covering tour-level main draw matches, tour-level 

qualifying and challenger main-draw matches, and futures matches. These files contain 

biographical information and ranking data for each player, as well as age and ranking 

points as of the start of the event. MatchStats, which provide detailed statistics about 

the matches, are available for tour-level matches from 2000 to 2022, for challengers 

from 2008 to the 2022, and for tour-level qualifying matches from 2011 to 2022. Some 

tour-level matches may be missing statistics due to unavailability from ATP. Davis Cup 

matches are included in the tour-level files, but do not have MatchStats available until 

recent seasons. 


A Kanban board in Jira was used to visualize the progress of completed work by 

organizing it into columns and cards. The board and its contents were used to guide 

the process of completing elementary data analysis, generation of summary statistics, 

data munging and cleaning, model preparation, model building, and model evaluation.


 Sackmann, J. (n.d.). ATP Tennis Rankings, results, and stats. GitHub. Retrieved December 18, 2022, from 2

https://github.com/JeffSackmann/tennis_atp
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Section 3 - Data Analysis 
3.1 - Data Import 

Primary data analysis was conducted to better understand the data, its structure, 

its distribution, and analyze any anomalies. 


Analysis begins with compiling all of the downloaded data sets. Create a data 

frame of all the file names, then filter for files ending in ‘atp_matches_20’, where the 

ending string denotes datasets for the year 2000 and onwards.


#Import dependencies

library(tidyverse)

library(caret)

library(kernlab)

library(lubridate)

library(DataExplorer)

library(skimr)

library(lares)
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A partial screenshot of the Kanban board used as part of the project, showcasing backlogged 
items To-Do, In-Progress, Validating, and Complete stages.



#Extract relevant file names from local forked repo

df <- data.frame(list.files(path = "~/Documents/Masters/Syracuse/IST 
687/FINAL_PROJECT/tennis_atp-master", pattern = "*.csv"))


df <- df %>% rename(file_name = 
list.files.path......Documents.Masters.Syracuse.IST.687.FINAL_PROJECT.
tennis_atp.master...)


df <- df %>% filter(grepl('atp_matches_20', file_name))


file_list <- paste('./tennis_atp-master/', df$file_name, sep = '')

file_list


Lastly, merge all the file’s contents into a singular data frame, named merged_df, 

which will be iteratively used from herein to clean the raw files’ data contents.


#Merge the contents of the files into singular data frame

merged_df <- file_list %>% map_df(~read_csv(., show_col_types = FALSE, 
col_types = list(winner_seed = 'd', loser_seed = 'd')))
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Data import of all datasets under study.



3.2 - Exploratory Data Analysis 
Data analysis continues with a fundamental visualization of the data, including its 

allocation size to system memory, discrete columns, continuous columns, missing data 

columns, complete rows, and missing observations. This information is visualized via 

one line using the DataExplorer package via the DataExplore::plot_intro() 

command.


# Basic analysis of data set

plot_intro(merged_df)


3.3 - Distribution of Data 
Next, one can analyze the distribution of the data, firstly by year. The original data 

set contains match data pertaining to each match date, but it is consolidated into one 

concatenated attribute. Split the date attribute into year, month, and day columns.


#Apply consistent date formatting 

merged_df$tourney_date <- ymd(merged_df$tourney_date)
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#Create year, month, and date columns

merged_df$tourney_year <- as.numeric(strftime(merged_df$tourney_date, 
'%Y'))

merged_df$tourney_month <- as.numeric(strftime(merged_df$tourney_date, 
'%m'))

merged_df$tourney_day <- as.numeric(strftime(merged_df$tourney_date, 
‘%d'))


Afterwards, instantiate variables containing the mean, median, and mode of the 

match years, and store their respective values as a character string in 

central_tendency_metrics. 


#Create variable inclusive of summary statistics

mean <- round(mean(merged_df$tourney_year),2)

median <- median(merged_df$tourney_year)

mode <- table(merged_df$tourney_year)

mode <- as.numeric(names(mode[which(mode == max(mode))]))

central_tendency_metrics <- paste(sprintf('Mean: %s', mean), 
sprintf('Median: %s', median), sprintf('Mode: %s', mode), sep = '  |  
')


The variable storing the central tendency metrics is then subsequently used in a 

ggplot caption via a command to show the distribution of matches by calendar year. 

A histogram is plotted with a green-yellow color, representative of a tennis ball. 

Appropriate titles are associated with the plot, and labels are given to the x and y axes 

respectively.


#Plot distribution of match data, by year

ggplot(merged_df, aes(x = tourney_year)) + 

  geom_histogram(color = 'black', fill = 'greenyellow', bins = 23) +

  scale_x_continuous(breaks=seq(2000,2022,1)) + 

  theme(axis.text.x = element_text(angle = 45), plot.title = 
element_text(hjust = 0.5)) + 

  ggtitle('Distribution of Matches by Calendar Year') + 

  xlab('Number of Matches') + 

  ylab('Calendar Year') +

  labs(caption = central_tendency_metrics)
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One can also analyze the distribution of match data by surface. Tennis is played on 

many surface types, but the most common ones are hard-court, clay-court, and grass-

court surfaces.


Repeat the same procedure of measures of central tendency outlined for the year 

attribute, but this time for the surface attribute. This time, the values return NAs, 

because the categorical values cannot be quantified using the built in functions for 

summary statistics.


#Create variable inclusive of summary statistics

mean <- round(mean(merged_df$surface),2)

median <- median(merged_df$surface)

mode <- table(merged_df$surface)

mode <- as.numeric(names(mode[which(mode == max(mode))]))

central_tendency_metrics <- paste(sprintf('Mean: %s', mean), 
sprintf('Median: %s', median), sprintf('Mode: %s', mode), sep = '  |  
')


Additionally, repeat the same procedure of plotting the match data distribution, but 

this time for the surface attribute.
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#Plot distribution of match data, by surface

ggplot(merged_df, aes(y = surface, fill = surface)) + 

  geom_bar(color = 'black') + 

  theme(axis.text.x = element_text(angle = 0), plot.title = 
element_text(hjust = 0.5)) + 

  ggtitle('Distribution of Matches by Surface') + 

  xlab('Number of Matches') + 

  ylab('Type of Surface') +

  labs(caption = central_tendency_metrics)


Lastly, one can create histograms for all the attributes found in the dataset 

automatically by using the DataExplorer package and the 

DataExplorer::plot_histogram() command. Notably, most attributes follow a 

normal distribution. There are several indications that sparse data is an issue for some 

attributes’ observations given the gaps in the data visualized. Attributes like 

$draw_size, $loser_id, $winner_id, and $tourney_month are all examples of sparse 

data not showing any particular distribution. Many attributes show very little variance, 

which will be explored later as part of primary dimensionality reduction.
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#Create a histogram of all attributes' distributions using the 
DataExplorer package

plot_histogram(merged_df)
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Section 4 - Data Cleaning and Dimensionality 

Reduction 
4.1 - Remove Attributes with High NA Percentages 

Variables included in the data set that have high NA percentages in their 

observations are likely to be noisy due to their incomplete nature. These are typically 

removed to improve computational times of the models being constructed, dependent 

on a NA completeness threshold. Given a 90% threshold, identify attributes that do not 

have at least 90% completeness of observation data. Afterwards, visualize missing row 

amounts, and remove the noisy attributes from the dataset.


# Identify high NA %age attributes

skim_df <- data.frame(skim(merged_df))

high_NA_perc <- skim_df %>% filter(complete_rate < 0.9)

high_NA_perc_list <- high_NA_perc$skim_variable

high_NA_df <- merged_df %>% select(high_NA_perc_list)


# Visualize high NA %age attributes

plot_missing(high_NA_df) + 

  ggtitle('Concerning Attributes due to High % of NAs') +

  theme(plot.title = element_text(hjust = 0.5))
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#Drop high NA %age attributes

merged_df <- subset(merged_df, select = 
-c(winner_seed,loser_seed,loser_entry,winner_entry))


4.2 - Analyzing Highly Correlated Variables 
	 When cleaning a data set due to be used in training a machine learning model, 

highly correlated variables can be problematic. When two variables are highly 

correlated, they can make the model difficult to interpret, lead to unstable and 

inconsistent model coefficients, decrease the accuracy of the model, and increase the 

risk of overfitting. One can begin to reduce the impact of highly correlated variables by 

identifying them, and if the relationship exceeds a correlation threshold, the attributes 

ought to be removed.
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Begin by storing the correlations of all attributes in a data frame where the cutoff 

of the relationship strength via Pearson’s correlation coefficient is 0.9. Apply this to only 

numeric variable types that have full observation sets.


# Analyze correlations for all variables

correlation_df <- (cor(merged_df[, unlist(lapply(merged_df, 
is.numeric))], use = ‘complete.obs’))


# Filter for only highly correlated variables

highly_correlated <- findCorrelation(correlation_df, cutoff = 0.9, 
verbose = TRUE)


From a visual perspective, plot the top 10 cross-correlations, visualizing both 

negative and positive correlations that are statistically significant with a maximum p-

value of 0.05.


# Correlation plot for all top 10 highly correlated variables

highly_correlated_df <- subset(merged_df, select = highly_correlated)

corr_cross(highly_correlated_df, max_pvalue = 0.05, top = 10)
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From the graphical output, one can see that several match statistics highly 

correlate with one another. These will be noted upon, but not removed until more 

advanced dimensionality reduction techniques are employed, like variable importance 

via Gini coefficients.


4.3 - Addressing NAs and Zeros 
The dataset contains many players who have no ATP rank due to their missing 

playing history. This data once again can prove to be a noisy variable given its 

inconsistent observations. Unfortunately, imputation is not possible here because rank 

is a discrete value that is assigned at a particular point in time to any given player. To 

avoid biasing the model with noisy observations, remove all instances of players where 

ranking is unavailable after having played 100 matches.


#Remove winners with less than 100 matches and no rank

winners <- table(merged_df$winner_name)

winners_less_100 <- merged_df[merged_df$winner_name %in% 
names(winners[winners < 100]), ]

winners_less_100_no_rank <- winners_less_100 %>% 
subset(is.na(winners_less_100$winner_rank))

merged_df <- anti_join(merged_df, winners_less_100_no_rank, by = 
"winner_id")


#Remove losers with less than 100 matches and no rank

losers <- table(merged_df$loser_name)

losers_less_100 <- merged_df[merged_df$loser_name %in% 
names(losers[losers < 100]), ]

losers_less_100_no_rank <- losers_less_100 %>% 
subset(is.na(losers_less_100$loser_rank))

merged_df <- anti_join(merged_df, losers_less_100_no_rank, by = 
"loser_id")


Additionally, there are some observations where no minute data is recorded for the 

match, meaning the match was not played, or stopped during proceedings due to 

weather, injury, scheduling conflicts, travel restrictions, and other administrative issues. 
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These observations are of no value given their lack of completeness and are to be 

removed.


merged_df <- merged_df[complete.cases(merged_df[, "minutes"]),]


4.4 - COVID-19 ATP Interruptions 
Due to the COVID-19 pandemic, a lot of player match-ups did not take place 

during the 2020 season. For all players eligible or ineligible to compete, their 

competitive ranking was frozen for the duration of the season. This freezing of the rank 

data adds noise to the model’s understanding of fluctuating rankings, by which all 2020 

match observations in the dataset will be removed.


str(merged_df$tourney_date)

matches_in_2020 <- filter(merged_df, merged_df$tourney_date >= 
'2020-01-01' & merged_df$tourney_date <= '2020-12-31')

merged_df <- anti_join(merged_df, matches_in_2020, by = 
“tourney_date”)


4.5 - Obscuring Target Variables 
In order to not reveal the data of match winners and their respective match 

attributes, 'winner' and 'loser' attribute values are reassigned into new variables 

independent of win and loss statuses. 


player_1 attributes are assigned to the player's name occurring first when 

alphabetically compared, and player_2 attributes are for the player's name occurring 

second when alphabetically compared. These are assigned alphabetically as to mask 

observation-specific indexing tied to winner and losers. Winners are assigned to a new 

attribute, result.
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#Create target variable

merged_df$result <- merged_df$winner_name


#Create function for sorting players in player_1

first_player_sort = function(x,y) {paste(sort(c(x, y))[1])}

first_player_sort = Vectorize(first_player_sort)


#Assign player_1 values to the player occurring first in the 
alphabetical comparison

merged_df <- merged_df %>% mutate(player_1 = 
first_player_sort(winner_name, loser_name))


#Create function for sorting players in player_1

second_player_sort = function(x,y) {paste(sort(c(x, y))[2])}

second_player_sort = Vectorize(second_player_sort)


#Assign player_2 values to the player occurring second in the 
alphabetical comparison

merged_df <- merged_df %>% mutate(player_2 = 
second_player_sort(winner_name, loser_name))


#Rename winner columns to player_1 columns, rename loser columns to 
player_2 columns

colnames(merged_df) <- gsub("winner", "player_1", colnames(merged_df))

colnames(merged_df) <- gsub("loser", "player_2", colnames(merged_df))




4.6 - Administrative Attribute Removal 
The dataset also contains some observations which are populated with 

alphanumeric symbols in the score attribute. Alphanumeric characters in the score 

attribute are indicative of a player retirement, default, or walkover. These rows are to be 

removed from the merged_df data frame due to their high row-wise missingness.
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An example of masked winner and loser attributes.



alpha_rows <- grep("[A-Za-z]", merged_df$score)

merged_df <- subset(merged_df, !(row.names(merged_df) %in% 
alpha_rows))


The merged data frame also contains many hyper-granular statistics about the 

match pertaining to each player. For macro-level analysis of who is likely to win, these 

statistics won't serve as useful primary dimensions and are to be removed to avoid 

hyperdimensionality of the model. These features are not expected to have a significant 

contribution to the target variable, and are expected to contribute to overfitting, added 

computational cost, and reduced interpretability.


#Remove granular attributes of winners

granular_w_stat_columns <- grep("w_", names(merged_df))

merged_df <- subset(merged_df, select = -granular_w_stat_columns)


#Remove granular attributes of losers

granular_l_stat_columns <- grep("l_", names(merged_df))

merged_df <- subset(merged_df, select = -granular_l_stat_columns)


There are also several administrative attributes in the dataset that have no added 

predictive value and are only existing for recording purposes to identify match data in 

ATP databases. These are to be removed, and include player’s nationality, and 

individual player ID.


merged_df <- select(merged_df, -c("player_1_ioc", "player_2_ioc", 
"player_1_id", “player_2_id"))


4.7 - Non-Imputable Attributes 

A small number of rows of players’ heights and hand preference is missing. They 

are for players ranked very low and have low number of matches played. Player's 

height could be imputed using the mean height value of the group, but height is 

important in tennis, and to not bias the data, the rows are removed. Similarly, hand 

preference can be imputed using the mode, but it would not be an accurate method of 
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imputation. Given that these are the only NA values remaining, one can use a sweeping 

na.omit() function to eliminate the observations.


merged_df <- na.omit(merged_df)


Lastly, we can preview the final cleansed data frame, consisting of 54,889 

observations and 28 attributes.
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A summary of the cleaned data frame of merged .CSVs.



Section 5 - Feature Engineering 
5.1 - Head-to-Head 

To better understand the historical results of a matchup, a head-to-head record is 

required for each pairing of players in the dataset. 


To create a head-to-head feature, first tabulate the total encounters between a pair 

of players across all tournament instances.


#Register total encounters

total_encounters <- data.frame(table(merged_df$player_1, 
merged_df$player_2))

merged_df <- merge(merged_df, total_encounters, by.x = c("player_1", 
"player_2"), by.y = c("Var1", "Var2"), all.x = TRUE)

merged_df <- rename(merged_df, total_encounters = Freq) 

 Next, match observations of player_1 to observations where player_1 is the 

winner, whilst simultaneously matching for player_2 results ending in the same 

player_1 victory. Logically, one is looking for instances of observations where 

player_1 played player_2 and won on player_1’s record, and player_2’s 

record. This makes sense because in a match there is only one winner, but the 

matchup can be made both ways, such as player_2 playing player_1. The 

frequency of these simultaneous occurrences is then tabulated in a frequency table to 

show the times these player pairings were recorded.


#Register player_1 victories

player_1_h2h_w <- data.frame(

                    table(

                      merged_df$player_1[merged_df$result == 
merged_df$player_1], merged_df$player_2[merged_df$result == 
merged_df$player_1]

                      )

                    )
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Adjustments are subsequently made to renaming the head-to-head data frame’s 

columns, and the player_1 head-to-head data is merged to the greater merged_df 

data frame by a player_1 and player_2 pairing join.


player_1_h2h_w <- rename(player_1_h2h_w, player_1_h2h = Freq)

merged_df <- merge(merged_df, player_1_h2h_w, by.x = c("player_1", 
"player_2"), by.y = c("Var1", "Var2"), all.x = TRUE)


This accounts for observations on player_1’s side of the head-to-head, and the 

populated values for player_2’s side are currently NA. Those are populated with 

zeros as player_2’s head-to-head record is calculated shortly.


#Replace NAs in the player_1_h2h column with the value 0


library(imputeTS)

merged_df$player_1_h2h <- na_replace(merged_df$player_1_h2h, 0)


The exact same procedure is then replicated for player_2.


#Replace NAs in the player_1_h2h column with the value 0

library(imputeTS)

merged_df$player_1_h2h <- na_replace(merged_df$player_1_h2h, 0)
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A screen grab of the merged data frame and the new head-to-head features.



#Register player_2 victories

player_2_h2h_w <- data.frame(

                    table(

                      merged_df$player_1[merged_df$result == 
merged_df$player_2], merged_df$player_2[merged_df$result == 
merged_df$player_2]

                      )

                    )

player_2_h2h_w <- rename(player_2_h2h_w, player_2_h2h = Freq)

merged_df <- merge(merged_df, player_2_h2h_w, by.x = c("player_1", 
"player_2"), by.y = c("Var1", "Var2"), all.x = TRUE)


#Replace NAs in the player_2_h2h column with the value 0

merged_df$player_2_h2h <- na_replace(merged_df$player_2_h2h, 0)


5.2 - % Win on Surface 
Given that variability of match results may depend on the surface the players are 

playing on, it is important to understand the cumulative win percentage of a player on a 

particular surface type. A similar approach to the head-to-head procedure outlined in 

5.1 is prescribed for the new feature, $player_x_surface_perc.


For each player, the amount of matches played on a surface are tabulated. 


#Calculate number of matches per player per surface

player_1_surface <- data.frame(

                    table(

                      merged_df$player_1, merged_df$surface

                      )

                    )


Afterwards, the same match up of player pairings and match winners is made. The 

only difference in the greater merged_df data frame is the engineered column is now 

dynamically calculated by dividing a player’s total wins on a surface to the total wins 

they’ve registered historically. Finally, some minor alterations are subsequently made to 

the merged_df data frame for legibility.
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#Calculate number of wins per player per surface

player_1_surface_wins <- data.frame(

                    table(

                      merged_df$player_1[merged_df$result == 
merged_df$player_1], merged_df$surface[merged_df$result == 
merged_df$player_1]

                      )

                    )


#Calculate win % per player per surface

player_1_surface_w_perc <- merge(player_1_surface, 
player_1_surface_wins, by.x = c("Var1", "Var2"), by.y = c("Var1", 
"Var2"), all.x = TRUE)

player_1_surface_w_perc$Freq.y <- 
na_replace(player_1_surface_w_perc$Freq.y, 0)

player_1_surface_w_perc$w_perc <- 
round((player_1_surface_w_perc$Freq.y/player_1_surface_w_perc$Freq.x), 
2)

player_1_surface_w_perc$w_perc <- 
na_replace(player_1_surface_w_perc$w_perc, 0)


#Drop columns used for calculation

player_1_surface_w_perc <- player_1_surface_w_perc %>% select(-Freq.x, 
-Freq.y)


#Rename player 1 win % data frame columns

player_1_surface_w_perc <- player_1_surface_w_perc %>% 
rename(player_1_surface_perc = w_perc)


The same process is then repeated for player_2.:


#Calculate number of matches per player per surface

player_2_surface <- data.frame(

                    table(

                      merged_df$player_2, merged_df$surface

                      )

                    )


#Calculate number of wins per player per surface

player_2_surface_wins <- data.frame(

                    table(

                      merged_df$player_2[merged_df$result == 
merged_df$player_2], merged_df$surface[merged_df$result == 
merged_df$player_2]

                      )

                    )
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#Calculate win % per player per surface

player_2_surface_w_perc <- merge(player_2_surface, 
player_2_surface_wins, by.x = c("Var1", "Var2"), by.y = c("Var1", 
"Var2"), all.x = TRUE)

player_2_surface_w_perc$Freq.y <- 
na_replace(player_2_surface_w_perc$Freq.y, 0)

player_2_surface_w_perc$w_perc <- 
round((player_2_surface_w_perc$Freq.y/player_2_surface_w_perc$Freq.x), 
2)

player_2_surface_w_perc$w_perc <- 
na_replace(player_2_surface_w_perc$w_perc, 0)


#Drop columns used for calculation

player_2_surface_w_perc <- player_2_surface_w_perc %>% select(-Freq.x, 
-Freq.y)


#Rename player 2 win % data frame columns

player_2_surface_w_perc <- player_2_surface_w_perc %>% 
rename(player_2_surface_perc = w_perc)


#Consolidate player_1 and player_2 data into merged_df

merged_df <- merge(merged_df, player_1_surface_w_perc, by.x = 
c("player_1", "surface"), by.y = c("Var1", "Var2"), all.x = TRUE)

merged_df <- merge(merged_df, player_2_surface_w_perc, by.x = 
c("player_2", "surface"), by.y = c("Var1", "Var2"), all.x = TRUE)


5.3 - % Win at General Tournament Stage 
Using the exact same method seen in 5.2, one is able to calculate the percentage 

of a player’s wins at a general tournament stage. This means that if they were to reach 

a particular round of any given tournament, how likely would they be to win that 

match?


#For player_1:


#Calculate number of matches per player per tournament stage

player_1_round <- data.frame(

                    table(

                      merged_df$player_1, merged_df$round

                      )

                    )
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#Calculate number of wins per player per tournament stage

player_1_round_wins <- data.frame(

                    table(

                      merged_df$player_1[merged_df$result == 
merged_df$player_1], merged_df$round[merged_df$result == 
merged_df$player_1]

                      )

                    )

#Calculate win % per player per tournament stage

player_1_round_w_perc <- merge(player_1_round, player_1_round_wins, 
by.x = c("Var1", "Var2"), by.y = c("Var1", "Var2"), all.x = TRUE)

player_1_round_w_perc$Freq.y <- 
na_replace(player_1_round_w_perc$Freq.y, 0)

player_1_round_w_perc$w_perc <- round((player_1_round_w_perc$Freq.y/
player_1_round_w_perc$Freq.x), 2)

player_1_round_w_perc$w_perc <- 
na_replace(player_1_round_w_perc$w_perc, 0)


#Drop columns used for calculation

player_1_round_w_perc <- player_1_round_w_perc %>% select(-Freq.x, 
-Freq.y)


#Rename player 1 win % data frame columns

player_1_round_w_perc <- player_1_round_w_perc %>% 
rename(player_1_round_perc = w_perc)


#For player_2:


#Calculate number of matches per player per tournament stage

player_2_round <- data.frame(

                    table(

                      merged_df$player_2, merged_df$round

                      )

                    )


#Calculate number of wins per player per tournament stage

player_2_round_wins <- data.frame(

                    table(

                      merged_df$player_2[merged_df$result == 
merged_df$player_2], merged_df$round[merged_df$result == 
merged_df$player_2]

                      )

                    )
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#Calculate win % per player per tournament stage

player_2_round_w_perc <- merge(player_2_round, player_2_round_wins, 
by.x = c("Var1", "Var2"), by.y = c("Var1", "Var2"), all.x = TRUE)

player_2_round_w_perc$Freq.y <- 
na_replace(player_2_round_w_perc$Freq.y, 0)

player_2_round_w_perc$w_perc <- round((player_2_round_w_perc$Freq.y/
player_2_round_w_perc$Freq.x), 2)

player_2_round_w_perc$w_perc <- 
na_replace(player_2_round_w_perc$w_perc, 0)


#Drop columns used for calculation

player_2_round_w_perc <- player_2_round_w_perc %>% select(-Freq.x, 
-Freq.y)


#Rename player 2 win % data frame columns

player_2_round_w_perc <- player_2_round_w_perc %>% 
rename(player_2_round_perc = w_perc)


#Consolidate player_1 and player_2 data into merged_df

merged_df <- merge(merged_df, player_1_round_w_perc, by.x = 
c("player_1", "round"), by.y = c("Var1", "Var2"), all.x = TRUE)

merged_df <- merge(merged_df, player_2_round_w_perc, by.x = 
c("player_2", "round"), by.y = c("Var1", "Var2"), all.x = TRUE)


5.4 - % Win at Tournament Level 
Using the exact same method seen in 5.3, one is able to calculate the percentage 

of a player’s wins at a tournament. This means that if they were to reach a particular 

tournament level (Master’s, Grand Slam, Challenger, etc.), how likely would they be to 

win that match?


#For player_1:


#Calculate number of matches per player per tournament level

player_1_tourney_level <- data.frame(

                    table(

                      merged_df$player_1, merged_df$tourney_level

                      )

                    )
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#Calculate number of wins per player per tournament level

player_1_tourney_level_wins <- data.frame(

                    table(

                      merged_df$player_1[merged_df$result == 
merged_df$player_1], merged_df$tourney_level[merged_df$result == 
merged_df$player_1]

                      )

                    )


#Calculate win % per player per tournament level

player_1_tourney_level_w_perc <- merge(player_1_tourney_level, 
player_1_tourney_level_wins, by.x = c("Var1", "Var2"), by.y = 
c("Var1", "Var2"), all.x = TRUE)

player_1_tourney_level_w_perc$Freq.y <- 
na_replace(player_1_tourney_level_w_perc$Freq.y, 0)

player_1_tourney_level_w_perc$w_perc <- 
round((player_1_tourney_level_w_perc$Freq.y/
player_1_tourney_level_w_perc$Freq.x), 2)

player_1_tourney_level_w_perc$w_perc <- 
na_replace(player_1_tourney_level_w_perc$w_perc, 0)


#Drop columns used for calculation

player_1_tourney_level_w_perc <- player_1_tourney_level_w_perc %>% 
select(-Freq.x, -Freq.y)


#Rename player 1 win % data frame columns

player_1_tourney_level_w_perc <- player_1_tourney_level_w_perc %>% 
rename(player_1_tourney_level_perc = w_perc)


#For player_2:


#Calculate number of matches per player per tournament level

player_2_tourney_level <- data.frame(

                    table(

                      merged_df$player_2, merged_df$tourney_level

                      )

                    )


#Calculate number of wins per player per tournament level

player_2_tourney_level_wins <- data.frame(

                    table(

                      merged_df$player_2[merged_df$result == 
merged_df$player_2], merged_df$tourney_level[merged_df$result == 
merged_df$player_2]

                      )

                    )
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#Calculate win % per player per tournament level

player_2_tourney_level_w_perc <- merge(player_2_tourney_level, 
player_2_tourney_level_wins, by.x = c("Var1", "Var2"), by.y = 
c("Var1", "Var2"), all.x = TRUE)

player_2_tourney_level_w_perc$Freq.y <- 
na_replace(player_2_tourney_level_w_perc$Freq.y, 0)

player_2_tourney_level_w_perc$w_perc <- 
round((player_2_tourney_level_w_perc$Freq.y/
player_2_tourney_level_w_perc$Freq.x), 2)

player_2_tourney_level_w_perc$w_perc <- 
na_replace(player_2_tourney_level_w_perc$w_perc, 0)


#Drop columns used for calculation

player_2_tourney_level_w_perc <- player_2_tourney_level_w_perc %>% 
select(-Freq.x, -Freq.y)


#Rename player 2 win % data frame columns

player_2_tourney_level_w_perc <- player_2_tourney_level_w_perc %>% 
rename(player_2_tourney_level_perc = w_perc)


#Consolidate player_1 and player_2 data into merged_df

merged_df <- merge(merged_df, player_1_tourney_level_w_perc, by.x = 
c("player_1", "tourney_level"), by.y = c("Var1", "Var2"), all.x = 
TRUE)

merged_df <- merge(merged_df, player_2_tourney_level_w_perc, by.x = 
c("player_2", "tourney_level"), by.y = c("Var1", "Var2"), all.x = 
TRUE)


5.5 - % Win at Specific Tournament Stage 
Given the aforementioned attributes, the next engineered attribute will be a 

combination of tournament specific round advancement win percentage. That is to say, 

when a player reaches x round in y tournament, what is his chance to win the 

matchup? This value is a simple multiplication and inserted as a dynamically 

populating column in merged_df.


#Calculate win %age of player 1 at x tournament in the nth round

merged_df$player_1_tourney_round_perc <- 
round((merged_df$player_1_tourney_level_perc * 
merged_df$player_1_round_perc), 2)


#Calculate win %age of player 2 at x tournament in the nth round

merged_df$player_2_tourney_round_perc <- 
round((merged_df$player_2_tourney_level_perc * 
merged_df$player_2_round_perc), 2)
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5.6 - Removal of Redundant Features Used in Feature Engineering 

Calculations 
With all desired features engineered, the attributes that were supplying the data to 

the features can be removed as they are now redundant. Remove them from the 

merged_df data frame.


redundant_features <- c('tourney_month', 'tourney_year', 
'tourney_day', 'tourney_id', 'match_num')

merged_df <- merged_df %>% select(-redundant_features)


features_to_keep <- c('player_1_age',

                      'player_2_age',

                      'player_1_rank',

                      'player_2_rank',

                      'player_1_h2h',

                      'player_2_h2h',

                      'player_1_round_perc',

                      'player_1_surface_perc',

                      'player_1_tourney_level_perc',

                      'player_1_tourney_round_perc',

                      'player_2_round_perc',

                      'player_2_surface_perc',

                      'player_2_tourney_level_perc',

                      'player_2_tourney_round_perc',

                      'surface',

                      'tourney_level',

                      'result')

merged_df <- merged_df %>% select(features_to_keep)


5.7 - Removing $result levels with Low Counts 
In an effort to reduce an already high number of classification levels as part of the 

$results attribute, improve computational time and model accuracy by removing levels 

that have less than 5 counts. 


#To simplify future classification, remove noisy results from $results 
where few counts are detected


less_than_5_wins <- data.frame(table(merged_df$result))

less_than_5_wins <- less_than_5_wins %>% filter(Freq < 5)


merged_df <- merged_df[!merged_df$result %in% less_than_5_wins$Var1,]
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5.8 - Final Organization of Merged Data Frame 
Lastly, all the columns in the dataset are ordered alphabetically for easy visual 

parsing.


#Order the columns alphabetically

merged_df <- merged_df[, order(names(merged_df))]


Section 6 - Data Splitting 
The merged_df data frame served as the basis of data splitting for training and 

testing data sets. Given the amount of computationally-intensive runtimes for the 

planned models, k-fold cross validation of 10 folds with 3 repeats was initially 

considered. However, R consistently crashed during attempted chunks of k-fold cross 

validation, and as such, the technique is missing from the study.


Training and testing data sets were split via a 70/30 proportionality, with stratified 

sampling to ensure an equal distribution of target variable classes in both sets. 


library(caret)

#Set the seed for reproducibility

set.seed(123)


#Set target variable as factor

merged_df$result <- as.factor(merged_df$result)


#Split the data into a training set (70%) and a testing set (30%)

train_idx <- createDataPartition(merged_df$result, p = 0.7, list = 
FALSE)

train <- merged_df[train_idx, ]

test <- merged_df[-train_idx, ]


#Split the data into x_train, x_test, y_train, y_test sets

x_train <- train %>% select(-result)

y_train <- train %>% select(result)

y_train <- as.factor(y_train$result)


x_test <- test %>% select(-result)

y_test <- test %>% select(result)

y_test <- as.factor(y_test$result)
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Section 7 - Model Building and Evaluation 
The models chosen for the target variable $result classification task included 

random forests and naive Bayes. From the preliminary project updates, gradient 

boosted random forests and logistic regressions were also to be compared, however, 

cumbersome use of xgb.matrix() data types and highly computationally expensive 

runtimes removed these two algorithms from consideration. 


7.1 - Random Forest Classifier, Default Settings 
A random forest classifier was created using the ranger package due to it being 

computationally more efficient than the randomforests package. Variable importance 

is measured during model creation using Gini impurity as the chosen metric of 

evaluation. 


library(caret)

library(ranger)


#Set seed for replicability

set.seed(123)


#Create model, measuring variable importance while building forest

rf_ranger <- ranger(result ~., data = train, importance = “impurity”)


#Print the model results

print(rf_ranger)
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The model’s most important variables are displayed using a customary ggplot 

implementation.


#Print the model's most important variables

rf_ranger_vi <- data.frame(importance(rf_ranger))

rf_ranger_vi <- rownames_to_column(rf_ranger_vi)


#Plot the model's most important variables

rf_ranger_vi %>% 

  ggplot(aes(reorder(rowname, importance.rf_ranger.), 
importance.rf_ranger.)) + 

  geom_col(aes(fill = importance.rf_ranger.)) + 

  scale_fill_gradient(low = "red", high = "green") +

  coord_flip() +

  labs(x = "Feature", y = "Importance (Gini Impurity") +

  ggtitle("Feature Importance for Random Forests Model”)




Using the training data and the mlMetrics package, call 

mlMetrics::Accuracy to determine the model accuracy of the default random 

forests model.
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#Determine default model accuracy on train data

library(MLmetrics)


y_pred <- rf_ranger$predictions

round((Accuracy(y_pred, y_train)), 4)


7.2 - Random Forest Classifier, Grid-Search Settings 
To optimize the hyperparameters of the random forests model, conduct a grid-

search of different hyperparameter values. 


The hyperparameters to be iterated upon are:


• mtry: the number of variables randomly sampled as candidates at each split 


• min.node.size: the minimum number of observations at a terminal node 


• num.trees: number of trees in the forest 


Conduct a grid-search with the values below, apply them to a random forest 

model using the training data, and append the root mean squared error (RMSE) values 

to a data frame. Note this is very computationally expensive and may take a long time.


n_features = rf_ranger$num.independent.variables

hyper_grid <- expand.grid(

  mtry = floor(n_features * c(.15, .25, .35)),

  min.node.size = c(1, 3, 5),

  num.trees = n_features * c(5, 10, 15)

)


for(i in seq_len(nrow(hyper_grid))) {

rf_ranger_opt <- ranger(

    formula         = result ~ ., 

    data            = train, 

    num.trees       = n_features * 10,

    mtry            = hyper_grid$mtry[i],

    min.node.size   = hyper_grid$min.node.size[i],

    verbose         = FALSE,

    seed            = 123,

    respect.unordered.factors = 'order',

  )


#store results

hyper_grid$rmse[i] <- sqrt(rf_ranger_opt$prediction.error)

}
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Once complete, review the results, and compare the percentage change of the 

hyperparameter tweaked models to the default model created in section 7.1.


#Compare grid-search optimized settings to model defaults


rf_ranger_rmse <- sqrt(rf_ranger_opt$prediction.error)

hyper_grid$default_rmse <- rf_ranger_rmse

hyper_grid <- hyper_grid %>% arrange(rmse) %>% mutate(percentage_gain 
= (rmse - rf_ranger_rmse) / rf_ranger$prediction.error * 100)


print(hyper_grid)


A lower RMSE score is better, meaning the model is able to fit the data better. With 

mtry = 5, min.node.size = 1, num.trees = 160, the RMSE from the default model 

decreases marginally by 2.11%.


#Generate the model with the grid-search optimized parameters

rf_ranger_opt_final <- ranger(result ~., 

                              data = train, 

                              importance = "impurity",

                              mtry = 5,

                              min.node.size = 1,

                              num.trees = 160)


#Print the optimized model's results

print(rf_ranger_opt_final)

print(paste("RMSE:", sqrt(rf_ranger_opt_final$prediction.error)))


#Determine optimized model accuracy on train data

y_pred_opt <- rf_ranger_opt_final$predictions

round((Accuracy(y_pred_opt, y_train)), 4)
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7.3 - Random Forest Classifier, Manually Optimized Settings 
From the previously created grid-search optimized model, the largest decrease in 

RMSE was observed when mtry (the number of variables randomly sampled at each 

split) increased. Create a random forest model manually using the hyperparameter 

values determined by the grid-search, but increase the mtry value and report on the 

model’s performance.


#Generate the model with the manually optimized parameters

rf_ranger_opt_manual <- ranger(result ~., 

                              data = train, 

                              importance = "impurity",

                              mtry = 10,

                              min.node.size = 1,

                              num.trees = 160)


#Print the optimized model's results

print(rf_ranger_opt_manual)

print(paste("RMSE:", sqrt(rf_ranger_opt_manual$prediction.error)))

#Determine optimized model accuracy on train data

y_pred_manual <- rf_ranger_opt_manual$predictions

round((Accuracy(y_pred_manual, y_train)), 4)
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7.4 - Random Forest Classifier, Truncated Features Settings 
From the previously created manually-tuned model in section 7.3, there may be 

the possibility that the model may perform better if its low-importance variables are 

removed. To test this, analyze the importance of variables part of the manually-tuned 

model, and drop the least important variable from the training and test data sets.


#Print the model's most important variables

rf_ranger_vi_opt_manual <- 
data.frame(importance(rf_ranger_opt_manual))

rf_ranger_vi_opt_manual <- rownames_to_column(rf_ranger_vi_opt_manual)


#Plot the model's most important variables

rf_ranger_vi_opt_manual %>% 

  ggplot(aes(reorder(rowname, importance.rf_ranger_opt_manual.), 
importance.rf_ranger_opt_manual.)) + 

  geom_col(aes(fill = importance.rf_ranger_opt_manual.)) + 

  scale_fill_gradient(low = "red", high = "green") +

  coord_flip() +

  labs(x = "Feature", y = "Importance (Gini Impurity") +

  ggtitle("Feature Importance for Manually-Optimized Random Forests 
Model”)
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#Truncate the least important feature from the training and test data 
sets

trunc_train <- subset(train, select = -tourney_level)

trunc_test <- subset(test, select = -tourney_level)


#Generate the model with the manually optimized parameters for the 
truncated data sets

rf_ranger_opt_manual_red <- ranger(result ~., 

                              data = trunc_train, 

                              importance = "impurity",

                              mtry = 10,

                              min.node.size = 1,

                              num.trees = 160)


#Determine optimized model accuracy on truncated train data

y_pred_manual_red <- rf_ranger_opt_manual_red$predictions

round((Accuracy(y_pred_manual_red, y_train)), 4)

[1] 0.6805


The truncated features model is marginally worse that the manually-tuned model, 

with an accuracy score of 68.05%.


7.5 - Naive Bayes Classifier 
Despite the data under study likely to be too complex for a naive Bayes model, it is 

worth testing due to naive Bayes being very generalizable and highly efficient in terms 

of computation cost. 


library(naivebayes)


#Create naive Bayes model

nb <- naive_bayes(result ~., data = train, usekernel = T, laplace = 1)


#Create naive Bayes model predictions on training data

y_pred_nb <- predict(nb, newdata = train)


#Assess accuracy of naive Bayes model on training data

Accuracy(y_pred_nb, y_train)

[1] 0.4311102


As expected the model performance is quite poor, likely due to the near 600 

classes found in the target variable factor.
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Section 8 - Conclusions 
Having completed building and evaluating the models selected for the 

classification task, one can compare model performance in a data frame storing the 

individual model’s performance. The metrics of out-of-bag (OOB) error will be reported 

on for random forest models, and RMSE. Accuracy for training and testing sets for 

each model will be automatically populated using the mlMetrics::Accuracy() 

function as seen in section 7.


#Create data frame to store model comparisons

columns <- c("Model", "OOB Error", "RMSE", "Accuracy_Train", 
"Accuracy_Test")

model_comparison <- data.frame(matrix(nrow = 0, ncol = 
length(columns)))

colnames(model_comparison) = columns


Evaluate the default random forest model using the following command:


#On train data

y_pred_train <- rf_ranger$predictions

train_acc <- round((Accuracy(y_pred_train, y_train)), 4)


#On test data

pred_ranger <- predict(rf_ranger, test)

y_pred_test <- pred_ranger$predictions

test_acc <- round((Accuracy(y_pred_test, y_test)), 4)


#Model data

oob_error <- round((rf_ranger$prediction.error), 4)

rmse <- round((sqrt(oob_error)), 4)


model_comparison[1,] <- c("Random Forest - Default",

                          oob_error,

                          rmse,

                          train_acc,

                          test_acc)
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Evaluate the grid-search optimized random forest model using the following 

command:


#On train data

y_pred_train <- rf_ranger_opt_final$predictions

train_acc <- round((Accuracy(y_pred_train, y_train)), 4)


#On test data

pred_ranger <- predict(rf_ranger_opt_final, test)

y_pred_test <- pred_ranger$predictions

test_acc <- round((Accuracy(y_pred_test, y_test)), 4)


#Model data

oob_error <- round((rf_ranger_opt_final$prediction.error), 4)

rmse <- round((sqrt(oob_error)), 4)


model_comparison[2,] <- c("Random Forest - Grid Search Optimized",

                          oob_error,

                          rmse,

                          train_acc,

                          test_acc)


Evaluate the manually optimized random forest model using the following 

command:


#On train data

y_pred_train <- rf_ranger_opt_manual$predictions

train_acc <- round((Accuracy(y_pred_train, y_train)), 4)


#On test data

pred_ranger <- predict(rf_ranger_opt_manual, test)

y_pred_test <- pred_ranger$predictions

test_acc <- round((Accuracy(y_pred_test, y_test)), 4)


#Model data

oob_error <- round((rf_ranger_opt_manual$prediction.error), 4)

rmse <- round((sqrt(oob_error)), 4)


model_comparison[3,] <- c("Random Forest - Manually Optimized",

                          oob_error,

                          rmse,

                          train_acc,

                          test_acc)
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Evaluate the truncated features random forest model using the following 

command:


#On train data

y_pred_train <- rf_ranger_opt_manual_red$predictions

train_acc <- round((Accuracy(y_pred_train, y_train)), 4)


#On test data

pred_ranger <- predict(rf_ranger_opt_manual_red, test)

y_pred_test <- pred_ranger$predictions

test_acc <- round((Accuracy(y_pred_test, y_test)), 4)


#Model data

oob_error <- round((rf_ranger_opt_manual_red$prediction.error), 4)

rmse <- round((sqrt(oob_error)), 4)


model_comparison[4,] <- c("Random Forest - Truncated Features",

                          oob_error,

                          rmse,

                          train_acc,

                          test_acc)


Evaluate the naive Bayes model using the following command:


#On train data

y_pred_train <- predict(nb, newdata = train)

train_acc <- round((Accuracy(y_pred_train, y_train)), 4)


#On test data

y_pred_test <- predict(nb, newdata = test)

test_acc <- round((Accuracy(y_pred_test, y_test)), 4)


#Model data

oob_error <- "NA"

rmse <- "NA"


model_comparison[5,] <- c("Naive Bayes Classifier",

                          oob_error,

                          rmse,

                          train_acc,

                          test_acc)
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To conclude the comparison, visualize the model performance in both a table form 

and visual bar plot form. 


model_comparison$Accuracy_Test <- 
as.numeric(model_comparison$Accuracy_Test)

model_comparison


ggplot(data = model_comparison, aes(x = Model, y = Accuracy_Test)) + 

  geom_col(aes(fill = Model)) +

  scale_y_continuous(limits = c(0, .8)) +

  ggtitle("Model Comparison by Test Accuracy Scores") +

  theme(axis.text.x=element_blank(),

        axis.ticks.x=element_blank())
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From the created models, the best fitting one in terms of lowest out-of-bag error is 

the default random forests model. In terms of its goodness of fit, the lowest RMSE 

model is also the default random forests model. The manually optimized model is the 

most accurate on the testing data set. Of the 4 random forests, the worst optimized 

one is the one with truncated features, and is not recommended for deployment into a 

production environment. The naive Bayes classifier exists as a formality for model 

diversification as it is not sufficiently complex to handle the excessive amount of factor 

levels found in the target variable, $result. 


Given that the manually optimized model returns the highest overall accuracy, one 

can proceed with assuming that the computed variable importance for the manually-

fitted model is the most appropriate for answering the initial study question. That is to 

say, the top 5 most important factors in determining a winner in ATP matches for the 

date range under study are:


1. Player age


2. Player win percentage per surface


3. Player rank


4. Player win percentage per tournament level


5. Player win percentage at general tournament stages / rounds


Section 9 - GitHub Repository 
Accompanying .RMD files, knitted HMTML outputs, and additional documentation 

for this study can be found at https://github.com/rfinatan/Factors-Association-Tennis-

Professionals-Winners.
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