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Section 1: Abstract 
Marine accidents in Canada’s waters affect the lives of Canadian citizens and 

foreign individuals every year. On an annual basis, the Transportation Safety Board 

(TSB) of Canada is responsible for maintaining an accurate understanding of all marine 

incidents via its Marine Safety Information Systems (MARSIS) database. TSB reports 

that on average between 200-300 marine incidents occur within Canadian territorial 

waters, of which 16-25% result in serious injuries, and 5-7.5% end in fatalities . 
1

Despite modern marine safety standards, accident rates per annum have not 

decreased significantly since 2010. The research question is to identify the key factors 

involved in Canadian marine accident fatalities and quantify the respective factors’ 

contributions to serious marine incidents. 


Analysis will be conducted on a marine occurrence dataset spanning from 1995 to 

2022  using Python. Techniques used in this analysis include essential data cleaning, 2

exploratory analysis coupled with summary statistics, and dimensionality reduction in 

the form of feature selection following calculations of feature importance. In addition, 

random forests, logistic regression, and Naive Bayes models will be created to predict 

the probability of a marine incident resulting in a fatality. 


 Government of Canada, T. S. B. of C. (2020, July 17). Marine transportation occurrences in 2020. Statistical 1

Summary - Transportation Safety Board of Canada. Retrieved September 24, 2022, from https://www.bst-
tsb.gc.ca/eng/stats/marine/2020/ssem-ssmo-2020.html

 Transportation Safety Board of Canada. (n.d.). Marine occurrence data from January 1995 to present - 2

occurrence. Open Government Portal. Retrieved September 24, 2022, from https://open.canada.ca/data/en/
dataset/ad8d1b73-df09-4521-9bdb-61c529328218/resource/1a548829-f7f8-4c2e-a344-a707b13e01c7
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Section 2: Literature Review, Data Description, and 
Methodology 

2.1 - Defining the Research Question 
	 The main topic of research in this study is the analysis of marine accidents occurring in 

Canadian waters for the years 1995 to 2022. More specifically, the research question is aimed 

at identifying the key factors involved in Canadian marine accident fatalities and quantifying the 

respective factors’ contributions to serious marine incidents.


A formalized version of the research question reads as follows:


For the years 1995 to 2022, what key factors involved in Canadian marine accidents have 

quantifiably shown a statistically significant contribution to marine accident fatalities? 

2.2 - Approach of Research 
	 All literature articles that are selected for the purpose of this literature review were found 

using the ProQuest Ebook Central in collaboration with Ryerson University’s library, Google 

Scholar searches, as well as the Transportation Safety Board of Canada’s database on marine 

transportation safety. 


2.3 - Literature Analysis 

2.3.1 - Summary of Literatures 

	 A large majority of available studies pertain to marine accident investigations conducted 

in bodies of water not belonging to Canada. Given the scope of the research question being 

limited to Canadian waters, only investigations originating from the Transportation Safety Board 

of Canada are directly applicable. Despite this, international or cross-national studies may 

prove useful in determining research methods and areas of focus not explored by Canadian 

investigators. 
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	 Investigations conducted on Canadian marine transportation safety incidents are 

typically conducted on a per-occurrence basis . This means that investigations are conducted 3

on specific maritime incidents, and studies are not often formed to analyze marine accidents 

on aggregate. Given that the scope of the research question looks to identify summarized 

variables influencing marine accidents, the literatures under review will also be considered only 

if they take on a macro-level approach to the research question.


2.3.2 - Canadian-Specific Literatures  

1. Transportation Safety Board Investigation M09Z0001: Safety Issues Investigation into 
Fishing Safety in Canada  4

	 This study on marine accidents in Canada is published by the Transportation Safety 

Board of Canada (TSB), with analysis completed for both public and private sector vessels 

involved in a marine incident between 1999 and 2010. It is arguably one of the most 

comprehensive studies of its type, identifying the context behind the impact of commercial 

vessels and their involvement in marine incident rates, the accident and fatality rates for the 

respective period, as well as the most pertinent safety issues contributing to marine accident 

fatalities. The study’s results are a compilation of analyses conducted by investigators with 

expertise across multiple marine disciplines, with a focus on observation and interpretation of 

370 investigation reports, 42 safety recommendations, and 100 safety advisory letters 

published prior to the report release date. 


	 


 Government of Canada, T. S. B. of C. (2019, May 6). Marine Transportation Safety 3

Investigations and reports. Transportation Safety Board of Canada. Retrieved October 23, 
2022, from https://www.tsb.gc.ca/eng/rapports-reports/marine/index.html

 Government of Canada, T. S. B. of C. (2012, August 10). Marine investigation report 4

M09Z0001. Marine Investigation Report M09Z0001 - Transportation Safety Board of Canada. 
Retrieved October 23, 2022, from https://www.tsb.gc.ca/eng/rapports-reports/marine/etudes-
studies/m09z0001/m09z0001.html
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A visual analysis of marine accident types conducted as part of the study.  5

	 While the TSB study is highly exhaustive in preparing future safety documentation for 

marine safety, it has a few limitations, and thus presents several information gaps that can be 

attenuated in the currently proposed study. 


	 i. The dataset under analysis is strictly constrained to marine vessels operating under 

the classification of a fishing vessel and does not take into account marine accidents as 

holistically as possible. More specifically, the investigation does not analyze any marine 

incidents for the respective time period unless the incident involved a commercial fishing 

vessel under 24.4 metres in length, or 150 gross tons.


	 ii. The study does not quantify incident exposure risk from variables that may interact 

with the 100+ safety actions common to Canadian fishing vessel accidents involved in this 

 Transportation Safety Board of Canada. (2010). Figure 4. Safety Issues Investigation into 5

Fishing Safety in Canada. Government of Canada. Retrieved October 23, 2022, from https://
www.tsb.gc.ca/eng/rapports-reports/marine/etudes-studies/M09Z0001/images/m09z0001-
figure-04.png.
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study. Despite this, there is a qualitative attempt made by the study to consolidate these 

findings as part of Table 3, Section 7.


	 iii. The study only contains data from 1999 to 2010, and may suffer from data 

freshness. Despite updated marine safety standards since the report’s release date, holistic 

marine accident rates per annum have not decreased significantly since 2010. There may be 

influencing factors not under consideration in the study that have since become sizeable for 

observation since the report’s release date.


Observed marine accident casualties over time in Canada, from 2010 to 2022.  6

  Transportation Safety Board of Canada. (2019, June 12). Marine occurrence data from 6 6

January 1995 to present. Open Government Portal. Retrieved October 23, 2022, from https://
open.canada.ca/data/en/dataset/ad8d1b73-df09-4521-9bdb-61c529328218

	 	 	 	 Page 7

Marine Accident Casualties by Year, 2010 to 2022

To
ta

lD
ea

th
s

0

5.5

11

16.5

22

Year
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022



2. Transportation Safety Board Investigation SM9501: A Safety Study of The Operational 
Relationship Between Ship Masters/Watch-keeping Officers and Marine Pilots  7

	 This study is the second safety issue investigation released by the Transportation Safety 

Board of Canada, pertaining to the operational relationship between ship masters/watch-

keeping officers and marine pilots. The dataset of the study involved 273 marine accident 

occurrences between February 1981 and May 1992, whereby collisions, groundings, strikings, 

contacts, and sinking of vessels were reported. Unlike Transportation Safety Board 

Investigation M09Z0001, there was no self imposed limitation on type, size, or activity of vessel 

in Canadian waters. Of the 273 incidents considered as part of the study, the research question 

of the investigation focused on a subset of 200 accidents involving erroneous human factors. 

This included vessel accident occurrences primarily influenced by misunderstandings, 

inattention, lack of communication, misjudgement, and miscellaneous human factors. 


	 Of the 200 accident subset wherein human error was involved, statistical analysis was 

conducted on a manufactured dataset from responses originating from a standardized 

questionnaire. As part of data collection, groups of respondents (pilots, ship masters, and 

officers) provided information on the attitudes, behaviours, and interactions among marine 

personnel involved in the respective accidents. 


	 The study concluded that improved standards of communication, reduction of language 

barriers, increased monitoring of vessel movements, and greater cooperation amongst crew 

members were all necessary in order to improve marine safety standards. 


 Government of Canada, T. S. B. of C. (1995, January 1). A SAFETY STUDY OF THE 7

OPERATIONAL RELATIONSHIP BETWEEN SHIP MASTERS/ WATCHKEEPING OFFICERS AND 
MARINE PILOTS. Marine Investigation Report SM9501 - Transportation Safety Board of 
Canada. Retrieved October 23, 2022, from https://www.tsb.gc.ca/eng/rapports-reports/marine/
etudes-studies/SM9501/SM9501.html
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Figure 1, Section 2.3.2, showcasing the propensity of human error in marine accidents between 1981 and 1992.  8

	 The study presents multiple findings on the importance of minimizing human error 

within marine safety procedures that had not been explored thoroughly prior to the report’s 

release date. While it investigates the scope of marine safety on a similar basis when compared 

to Transportation Safety Board Investigation M09Z0001, SM9501 limits its overall ability to 

derive insights due to several research limitations:


	 i. The study presents an inherent bias in the types of vessels under investigation. The 

dataset primarily focuses on marine accident occurrences where 87% of the 273 occurrences 

were involving vessels greater than 5,000 gross registered tons. This impacts the scope of data 

that could have been captured in occurrences involving small registered vessels, which could 

possibly experience similar human error scenarios. This presents an opportunity for the current 

study proposal which aims to consider all vessel classes, weights, and sizes to provide an 

overall understanding of human and non-human factors affecting marine accident fatality rates.


 Transportation Safety Board of Canada. (1995). Figure 1. Transportation Safety Board of 8

Canada. Government of Canada. Retrieved October 23, 2022, from https://www.tsb.gc.ca/eng/
rapports-reports/marine/etudes-studies/SM9501/images/ems9501a.gif.
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	 ii. The contributing factors under study aimed to assess the impact of human error on 

marine accidents and fatalities. However, of the attributes under consideration, no direct 

interaction calculation was attempted between human and non-human factors. It is possible 

that non-human factors, such as technical failures of the vessels, environmental conditions, 

port facilities conditions, and interference from other vessels could impact the contributing 

human factors under study.


	 iii. As briefly mentioned in the critical review of Transportation Safety Board 

Investigation M09Z0001, SM9501 also suffers from data freshness given the dataset was 

collected between 1981 and 1992. The survey data gathered may also be subject to survey 

question bias given that “[…]each question began with the prefix "In my experience….”[…]”, 

and did not offer any other form of questionnaire data input. 


	 The dataset of the proposed study does not need to contend with an issue of bias given 

that it is factual data of marine accident occurrences simply logged monthly. However, the data 

under proposal may be susceptible to accident occurrence validation given its high-level of 

data freshness .
9

 Transportation Safety Board of Canada. (2019, June 12). Marine occurrence data from 9

January 1995 to present. Open Government Portal. Retrieved October 23, 2022, from https://
open.canada.ca/data/en/dataset/ad8d1b73-df09-4521-9bdb-61c529328218
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2.3.3 - International Literatures  

3. An Analysis of Factors Affecting the Severity of Marine Accidents  10

	 This study comprises of a statistical analysis of 1,207 marine accidents occurring 

across the globe from 2010 to 2019. The data collected for this study are from 7 marine safety 

boards, inclusive of the Transportation Safety Board of Canada, the Marine Accident 

Investigation Branch of the United Kingdom, the Australian Transport Safety Bureau, the United 

States Office of Marine Safety, the German Federal Bureau of Maritime Casualty Investigation, 

the China Maritime Safety Administration, and the Japan Transport Safety Board. Given various 

severities of marine accident categories, Wang et al. explore the influencing factors of the 

severity of marine accidents using an ordered logistic regression model. 


	 The results of the study are able to provide a probability of the positive associative 

factors resulting in a higher marine accident severity. In addition, the same results are 

individually documented for types of vessels, as well as seven accident categories: collision, 

grounding, fire/explosion, contact, sinking, equipment failure, and others. Relativity of accident 

severity ratios are provided for different influencing factors as part of the study, inclusive of 

accident type, human element, ship type, ship condition, and environmental interference. The 

study aims to address some of the limitations of the aforementioned Canadian literature by 

including human, technical, and environmental factors as part of the interactions leading up to 

marine accident occurrences. 


 Wang, H., Liu, Z., Wang, X., Graham, T., & Wang, J. (2021). An analysis of factors affecting 10

the severity of marine accidents. Reliability Engineering & System Safety, 210, 107513. 
doi:10.1016/j.ress.2021.107513
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2.4 - Data Description 
	 The dataset under study is titled “Marine occurrence data from January 1995 to 

present” and is published in CSV format by the Government of Canada in cooperation with the 

Transportation Safety Board of Canada. The data is directly sourced from the Marine Safety 

Information Systems (MARSIS) operated by the TSB. Notably, the data set is refreshed on or 

soon after the 15th of every month. As such, there are some small changes that may occur 

between the time of writing this data description and the final version of the data set used in 

model production. The full data set ranges from January 1995 to the present day, up until the 

latest cycle of 15 days occurring at the time of writing. The full data set operates under an 

Open Government Licence by the Government of Canada and can be found at this URL: 


https://www.tsb.gc.ca/includes/stats/csv/Marine/MARSISdb_MDOTW_VW_OCCURRENCE_PUBLIC.csv


	 For the respective marine occurrences under study, there are also records on the 

relevant vessels, navigation equipment, lifesaving appliances equipment, recording equipment, 

and injuries descriptions. These are all distributed as separate CSV files, but will not be under 

study as part of the core hypothesis analysis. There may be additional academic links made to 

the CSVs for explanatory or descriptive purposes, but not statistical or quantifiable analysis.


	 The raw dataset contains 83,797 entries across 160 attributes. For the analysis under 

study, not all 160 attributes will be considered. To view all 160 attributes, a data dictionary has 

been compiled by the TSB and is accessible here.


	 To understand the impact of attributes contributing to marine accident fatalities, a 

subset of the data must be taken, whereby only severe accidents resulting in fatalities have 

occurrence records. The dataset by default classifies occurrences by International Maritime 

Organization class levels, as well as TSB investigation classification levels of the occurrence. 

These two classifications differ in the way they numerically attribute fatalities to the 
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occurrences - subsequently, it is most prudent to simply look at occurrences which have non-

zero fatality records.


import pandas as pd 

marsis_raw = 
pd.read_csv("MARSISdb_MDOTW_VW_OCCURRENCE_PUBLIC.csv") 
marsis_deadly = marsis_raw[marsis_raw["TotalDeaths"] > 0] 

	 Of interest, there are 3,235 records of fatalities. These records ought to be further 

subdivided by the severity of the accident leading to the fatality occurrence. Not all fatalities 

are the result of extreme circumstances, and observing the breakout of accident severity may 

give an indication of the distribution of accident severity respective to fatality occurrences.


	 For the purposes of enabling this study to be universally accessible, accident severity is 

best subcategorized under the International Maritime Organization’s standards . These include 11

three levels of severity, identified as the following:


• Level 1 - Very Serious Marine Casualty: A marine incident which involves a loss of 

life, severe pollution, or a total loss of the vessel involved.


• Level 2 - Marine Casualty: An occurrence not classified as a very serious casualty, 

typically involving a fire, explosion, collision, grounding, contact, heavy weather 

damage, ice damage, hull cracking, or suspected hull defects, resulting in:


• immobilization of main engines, extensive accommodation damage, severe 

structural damage, such as penetration of the hull under water, etc., rendering 

the ship unfit to proceed


 International Maritime Organization. (2014, November 18). CASUALTY-RELATED MATTERS* 11

REPORTS ON MARINE CASUALTIES AND INCIDENTS Revised harmonized reporting 
procedures – Reports required under SOLAS regulations I/21 and XI-1/6, and MARPOL, articles 
8 and 12. International Maritime Organization. Retrieved October 23, 2022, from https://
wwwcdn.imo.org/localresources/en/OurWork/MSAS/Documents/MSC-MEPC3/MSC-MEPC.3-
Circ.4%20Rev%201%20%20Revised%20harmonized%20reporting%20procedures%20-
%20Reports%20required%20under%20SOLAS%20regulations%20I21.pdf
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• pollution (regardless of quantity)


• a breakdown necessitating towage or shore assistance


• Level 3 - Marine Incident: Includes occurrences not classified as very serious or 

serious casualties. Includes records in which hazardous occurrences or “near misses” 

took place, and if no corrective action were taken, would have endangered the safety 

of the vessel, its occupants, or any other person or the environment. 


names = ["Very Serious Casuality", "Casualty", "Incident"] 
values = [ 
    len(marsis_deadly[marsis_deadly["ImoClassLevelID"] == 1]), 
    len(marsis_deadly[marsis_deadly["ImoClassLevelID"] == 2]), 
    len(marsis_deadly[marsis_deadly["ImoClassLevelID"] == 3]) 
] 

plt.bar(names, values) 
plt.yscale("log", base=10) 
plt.xlabel("IMO Marine Occurrence Severity") 
plt.ylabel("Number of Occurrences") 
plt.title("Marine Accident Occurrences Classified by Severity") 
plt.grid(True) 
plt.show() 
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 In addition to analyzing the severity classification of each individual fatality, the cause of 

the accident or incident will be an important variable in feature engineering. Each accident / 

incident type is provided in the dataset by a presumed attribute named 

AccIncTypeDisplayEng, containing more granular classifications of each incident under 

study. To understand how many deaths are attributed to marine occurrence severity and their 

respective impact on total death counts, the following grouping is made to better illustrate the 

data:


	 One assumption that needed also to be tested early on for our hypothesis was the 

correlation found between injuries sustained in an occurrence and the total deaths in an 

incident depending on the severity class of the incident. A correlation matrix was created to 

primarily analyze the directional relationship between total deaths and several attributes 

commonly occurring in highly severe classes of incidents.
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	 The correlation matrix below analyses the following attributes commonly seen in highly 

severe classes of incidents:


• TotalMinorInjuries: The total number of persons who received minor injuries as a result 

of the occurrence.


• TotalSeriousInjuries: The total number of persons seriously injured as a result of the 

occurrence.


• TotalMissingIndividuals: The total number of persons who are missing as a result of 

the occurrence.


• TotalPeopleInTheWater: The total number of persons in the water as a result of the 

occurrence. 




	 


	 Given the per occurrence correlation between total deaths and the aforementioned 

attributes, there appears to be no correlation (or an extremely weak positive correlation). As 

there is little directionality in the correlation matrix to indicate a relationship between the 

suspected attributes, additional exploratory analysis will need to be conducted during feature 

engineering. There is also additional intra-attribute analysis that needs to be conducted in 

order to determine deeper relationships between suspected (and not already considered) 

variables.
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	 Lastly, some summary statistics on fatality occurrences provide us with an 

understanding of some of the dataset’s aforementioned attributes and the range of values that 

are appropriate for further analysis and interpretation.


2.5 - Methodology 

	 As part of the iterative process of this study, the illustration seen below will act as a 

primary flow of work to be completed given the established approach thus far.


1. Hypothesis writing and initial problem framing


2. Data collection and data imports


3. Data exploration


	 3.1. Initial findings, summary statistics


	 3.2 Data cleanliness and data logic


4. Feature selection


5. Feature engineering


6. Model creation


	 6.1. Random Forests


	 6.2  Logistic regression


	 6.2. Naive Bayes


7. Model evaluation


	 7.1. Model interpretation


8. Conclusions and final presentation
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Section 3: Initial Analysis 

3.1 - Fundamental Data Analysis 
	 Before beginning any elementary data analysis, recall the datasets under study:


• MARSISdb_MDOTW_VW_OCCURRENCE_PUBLIC - Data of marine occurrences in 

Canadian waters from January 1995 to present


• MARSISdb_MDOTW_VW_OCCURRENCE_VESSEL_PUBLIC - Vessel-specific data 

involving marine occurrences in Canadian waters from January 1995 to present


	 The two datasets are saved locally in the project’s working directory from the provided 

URLs, in .CSV format. Analysis begins with initial data imports of the CSVs, stored as pandas 

data frames in two respective variables.


#initial data import 
occurence_raw = 
pd.read_csv('MARSISdb_MDOTW_VW_OCCURRENCE_PUBLIC.csv') 
vessel_raw = 
pd.read_csv('MARSISdb_MDOTW_VW_OCCURRENCE_VESSEL_PUBLIC.csv') 

	 For the purposes of this study, both occurrence-specific attributes and vessel-specific 

attributes are taken under consideration in order to analyze their respective impact on fatality 

occurrences. The two datasets share the same occurrence primary key, OccID. In order to 

have both datasets’ attributes in a single data frame, they are merged using the following 

command:


#merge the raw data sets 
marsis_raw = pd.merge( 
    occurence_raw, 
    vessel_raw, 
    how = 'inner', 
    left_on = 'OccID', 
    right_on = 'OccID') 
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	 With the merged data frame, one can begin inspecting the structure of the data and its 

respective attributes. This step is crucial in understanding the amount of rows, columns, and 

types of attributes comprising each record.


#view structure of the dataset 
marsis_raw.info() 

Out[]: 
<class 'pandas.core.frame.DataFrame'> 
Int64Index: 137368 entries, 0 to 137367 
Columns: 194 entries, OccID to ActivityCategoryDisplayFre 
dtypes: float64(68), int64(12), object(114) 

#view attribute data types 
marsis_raw.dtypes 

Out[]:  
OccID                           int64 
OccNo                          object 
OccClassID                      int64 
OccClassDisplayEng             object 
OccClassDisplayFre             object 
VesselPhaseDisplayFre          object 
Speed_Knots                   float64 
ActivityCategoryID            float64 
ActivityCategoryDisplayEng     object 
ActivityCategoryDisplayFre     object 
Length: 194, dtype: object 

	 Glimpsing at the combined data frame using pandas also provides a view of some 

basic descriptive statistics for each attribute.


#view structure of combined data frame using pandas 
pd.DataFrame.describe(marsis_raw) 
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	 For the extracted data types, one can store them into a data frame for further analysis 

or manipulation. The data types of the columns are stored in a data frame, pointing to a 

variable named marsis_data_types.


#create a dataframe of the datatypes in the dataset 
marsis_data_types = marsis_raw.dtypes.to_frame('dtypes').reset_index() 
marsis_data_types.rename(columns = {'index':'raw_attribute'}, inplace 
= True) 

	 With the pandas-identified data types in the merged dataset, one can compare the 

attributes’ data types with the ones provided by the author of the dataset via a data dictionary. 

The data dictionary for this study is found here, and imported into the IDE as MARSISdb-dd-

processed.csv, and consequently stored in a new variable marsis_dd. The data dictionary 
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The output data frame containing pandas-identified data types.

https://www.tsb.gc.ca/eng/stats/marine/csv/MARSISdb-dd.csv


is then merged with the previously created marsis_data_types data frame in order to view 

the pandas-identified data types and the author-identified data types side-by-side. This side-

by-side comparison data frame is stored in a new variable, data_type_comparison.


#compare identified data types to provided data dictionary 
marsis_dd = pd.read_csv("MARSISdb-dd-processed.csv") 
marsis_dd = marsis_dd[marsis_dd.table_name == 
'MDOTW_VW_OCCURRENCE_PUBLIC'] 
data_type_comparison = pd.merge( 
    marsis_data_types, 
    marsis_dd, 
    how = "inner", 
    left_on = "raw_attribute", 
    right_on = "column_name" 
) 
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A glimpse of the first rows of the pandas-identified data types and the authored data dictionary data types.



3.2: Data Cleaning 

3.2.1 - Basic Data Cleaning, Primitive Dimensionality Reduction 

	 As part of elementary data cleaning, some inconsistencies in the data set need to be 

addressed before formal dimensionality reduction. Given that many data analysis tools are 

unable to accept missing data when training models, elimination of missing data records or 

columns may be necessary, despite the loss of information incurred. Removing records and 

columns that are completely empty will not impact the inferential capacity of a model given that 

no data is present in an attribute. 


#remove attributes with no values 
marsis_no_nas = marsis_raw.copy(deep=True) 
marsis_no_nas.dropna(how='all', axis='columns', inplace=True) 

	 With this command, the data set under study is reduced from 194 dimensions, to 190. 

Four attributes had no data records at all. 


Given that the data set is published by the Government of Canada and its Transformation 

Safety Board (TSB), the attributes that are non-numerical are duplicated in both English and 

French. For the purposes of analyzing the attributes and their record row values, only one 

language is necessary. Continue cleaning the data set by dropping all French attributes, 

denoted by a text string ending in ‘DisplayFre’.


#some columns are duplicated in English and French  
#only require the English attribute variants, remove the French  
marsis_eng_only = marsis_no_nas.copy(deep=True) 
marsis_eng_only.drop(marsis_eng_only.filter(regex='DisplayFre').column
s, axis=1, inplace=True) 

By removing French duplicated attributes, the data set under study is further reduced from 190 

dimensions to 140.
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	 In addition to removing attributes which have 100% NA records, one ought to also 

reduce the amount of dimensions that have NAs that exceed a particular proportionality relative 

to the overall attribute’s records. Determine which attributes have more than 80% NA records, 

add them to a list, and remove all attributes which comprise of more than 80% NA records.


#determine each column's percentage of NA records 
nas_percentage = (marsis_eng_only.isna().mean().round(2) * 
100).to_frame(name = 'percentage') 
#determine the columns with high percentage of NAs, more specifically 
greater than 80% NAs 
nas_80_percent = nas_percentage.loc[nas_percentage['percentage'] > 80] 

Next, a visual check is conducted for the anticipated inflection point for NA percentages. One 

ought to verify if 80% NA records is an appropriate threshold for attribute elimination.


#visualize distribution of NA percentages 
import matplotlib.pyplot as plt 
import numpy as np 
plt.hist(nas_percentage['percentage'], bins = 20) 
plt.xticks(np.arange(0, max(nas_percentage['percentage']), 5)) 
plt.title('Number of Attributes and Their % of NA Records') 
plt.xlabel('Percentage of Attribute NA Records') 
plt.ylabel('Number of Attributes') 
plt.show() 

	 	 	 	 Page 24



Judging from the visualization, 80% NAs seems to be a good threshold to remove attributes. 

There are too few attributes in between 85% and 20% to account for significant dimensionality 

reduction. Next, a list of attributes is created that matches the 80% NAs condition, and after, 

the attributes contained in the list are dropped from the overall data set.


#create a list of the attributes that have higher than 80% NA records 
nas_80_percent.reset_index(inplace=True) 
nas_80_percent_list = list(nas_80_percent['index']) 

#remove the attributes with more than 80% NA records 
marsis_no_nas_80 = marsis_eng_only.drop(columns = nas_80_percent_list) 

By removing the attributes with more than 80% NA records, the data sets dimensions have 

been further reduced from 140 to 90.


	 Continuing with basic dimensionality reduction, a separate source of NAs persists in the 

processed data set so far, whereby NAs are masked as NULL text strings. All columns which 

are completely containing NAs masked as NULL text strings are removed.  


#there are also columns that have NA values masked as NULL strings 
#identify the columns with all NULL string records 
marsis_nulls = marsis_no_nas_80.loc[: , ((marsis_no_nas_80 == 
'Null').any())] 
marsis_nulls = list(marsis_nulls.columns) 

#remove the columns with all NULL string records 
marsis_basic_cleaned = marsis_no_nas_80.drop(columns = marsis_nulls) 

With this command, only a single attribute was dropped from the data set, to a new running 

total of 89 attributes.


3.2.2 - Contextual Data Cleaning 

	 Up until this point, the raw data and its respective iterations of processing had been 

saved to new variables to account for any retroactive errors or overzealous data cleansing. In 

addition, the data cleansing techniques employed in section 2.1 were wide-sweeping and 

general in nature; they are techniques that likely could be deployed to any dataset. The next 

step is to contextualize data munging relative to the study’s hypothesis - identifying 
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deterministic factors of marine occurrences resulting in fatalities in Canadian waters from 1975 

to the present day. From herein, cleansing of the dataset will occur iteratively and have its 

results stored in a data frame variable named marsis_processed.


#given the context of the study, the area of focus is occurrences 
resulting in deaths 
marsis_processed = marsis_basic_cleaned.copy(deep=True) 

	 The processed dataset contains many records which are seemingly duplicates. 

Particularly when analyzing the attributes OccID (the unique ID assigned to an occurrence) and 

OccNo (the unique case file number assigned to an occurrence), one can see that multiple 

OccID and OccNo records refer to the same event. This is because the Government of 

Canada’s marine authorities are required to log individual phases of an occurrence, while 

maintaining a record of which occurrences had multiple phases. The recommended cleaning 

technique is to keep records with the most recent date-time stamps as they are rows 

containing the final outcome of each marine occurrence.


#to identify the unique cases of deadly occurrences, duplicate OccIDs 
must be dropped, and only the most recent is kept 
#the most recent OccID is kept because it houses the final 
investigative data leading to the occurrence's result 

#all OccDate instances have a 12:00:00 timestamp applied to them, 
whether actual or not 
#strip timestamp from OccDate attribute records 
marsis_processed['OccDate'] = 
marsis_processed['OccDate'].str.replace(' 12:00:00 AM', '') 

#some OccTime instances have NA values; assume 00:00:00 timestamp 
given lack of information 
marsis_processed['OccTime'] = 
marsis_processed['OccTime'].fillna('00:00:00') 

#concatenate date and time attributes 
marsis_processed['OccDateTime'] = marsis_processed['OccDate'] + ' ' + 
marsis_processed[‘OccTime'] 

#ensure date attributes are of dtype 'datetime' 
marsis_processed['OccDateTime'] = 
pd.to_datetime(marsis_processed['OccDateTime']) 

	 	 	 	 Page 26



#drop duplicate OccId instances, but keep latest OccId instance 
marsis_processed_unique = 
marsis_processed.sort_values('OccDateTime').drop_duplicates('OccID', 
keep = 'last') 

3.2.3 - Removing Duplicate Attributes and Keeping Integer Encoding 

	 Record rows within the dataset are now unique based off of the attribute OccID. The 

processed dataset is now comprised of 45,059 records and 90 attributes, which is still 

containing many attributes undesirable for model building and evaluation. Within the 

marsis_processed data frame, there are many duplicate attributes. These duplicate 

attributes are shown in the dataset firstly as an encoded value (using TSB nomenclature), 

followed by a textual representation of the encoded value. For model creation, one ought to 

only keep encoded values - any other attribute classes would need to be encoded separately 

using one-hot encoding, or another preferred method.


#remove attributes that have an equivalent attribute, but keep the 
attribute that has integer encoding 

#OccID and OccNo represent the same occurrence, but only one is 
necessary for classification 
marsis_processed = marsis_processed_unique.drop(columns = 'OccNo') 
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#OccClassID and OccClassDisplayEng are identical, but only OccClassID 
is integer encoded 
marsis_processed = marsis_processed.drop(columns = 
‘OccClassDisplayEng') 

#the same duplicate attribute (integer encoding vs non-encoded) 
scenario applies to all attributes ending in '[...]DisplayEng' 
marsis_processed.drop(marsis_processed.filter(regex='DisplayEng').colu
mns, axis=1, inplace=True) 

3.2.4 - Removing Attributes Unfit for Encoding 

	 Within the processed data frame, the reduced dimensions also include several 

attributes that cannot be encoded efficiently due to the contents of their records. Some 

variables that are unfit for encoding are the textual summaries of the occurrences, the reporting 

officers’ names filing the occurrence, the textual descriptions of the nearest identifiable location 

to the occurrence location, and more. These attributes are subsequently dropped from the 

marsis_processed data frame.


#the dataset contains a set of attributes too varied or complex in 
their contents to be encoded 
#remove attributes unfit for encoding  
unfit_for_encoding = ['IICName', 'Summary', 
'NearestLocationDescription', 'OccDate', 'OccTime', 'OccDateTime', 
'WindDirection'] 

marsis_processed = marsis_processed.drop(columns = unfit_for_encoding) 

3.2.5 - Removing Attributes with Low Variance 

	 In order to distill the dataset to its most relevant attributes, a low variance filter should 

also be applied to the marsis_processed data frame. Any attributes with variance beyond a 

certain threshold, or approximating zero variance, should be dropped. In the case of the study 

at hand, the numeric attributes’ variance is calculated, stored in a list if they are approaching 

zero variance, and are then removed. Before the attributes are added to the removal list, they 

are manually contextualized with respect to the hypothesis to ensure no critical data is lost.
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#determine variance of records per column in dataset 
attribute_variance = marsis_processed.var(numeric_only = 
True).to_frame() 

#remove low variance attributes from dataset 
low_variance_attributes = ['IncludedInDailyEnum', 
'MajorChangesIncludedInDaily', 'LatEnum', 'LongEnum'] 

marsis_processed = marsis_processed.drop(columns = 
low_variance_attributes) 

3.2.6 - Removing Attributes Irrelevant to Hypothesis 

	 The final step of this project’s data cleansing is removing any attributes which may be 

irrelevant to the hypothesis under study. These are primarily attributes which serve an 

administrative purpose on when records were filed, closed, released, and published by the 

Transportation Safety Board. They are attributes which only exist for internal reporting or record 

identification purposes, and are to be dropped from the processed dataset.


#remove administrative attributes 
administrative_attributes = ['ReleasedDate', 'OccClosedDate', 
'EntryDate', 'ReportedDate', 'ReportedByID', 'OccID', 'TimeZoneID'] 

marsis_processed = marsis_processed.drop(columns = 
administrative_attributes) 

Section 4: Target Attribute Creation, and Building 
Train, Validation, Testing Sets 

4.1 - Target Variable Creation 
	 From the final marsis_processed dataset, one can infer the target variable to be 

TotalDeaths, but this assumption is not optimal for the hypothesis under study. The 

hypothesis aims to identify the deterministic factors in occurrences resulting in a marine 

fatality, and not to quantify the amount of deaths caused by marine occurrence attributes. This 

frames the study as one which identifies the classification of a marine fatality occurrence. 

Firstly, calculating the number of class levels required for fatality classification is required. 
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#store distribution of TotalDeaths 
marsis_deadly = marsis_processed[marsis_processed['TotalDeaths'] > 0] 

#the range of deaths is between 0, and 84 
#most deaths are distributed between 0 and 5 
plt.hist(marsis_deadly['TotalDeaths'], bins = 100) 
plt.xticks(np.arange(0, max(marsis_deadly['TotalDeaths']), 1)) 
plt.title('Distribution of TotalDeaths') 
plt.xlabel('Number of Deaths per Occurrence') 
plt.ylabel('Number of Occurrences') 
plt.xlim(0, 10) 
plt.show() 
 

#the average death count for fatal occurrences is 1.45 deaths 
import statistics 
statistics.mean(marsis_deadly['TotalDeaths']) 

#since the number of average deaths is less than 2, the target 
variable death classifier will be a binary Yes or No 
#add the target variable OccDeathClassID with the classification 1 = 
yes, 0 = no 
marsis_processed['OccDeathClassID'] = 
np.where(marsis_processed['TotalDeaths']!= 0, 1, 0) 
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4.2 - Data Splitting 
	 With the target variable OccDeathClassID appended as a binary classification 

attribute to the marsis_processed data frame, the next step is to create input and output 

arrays for further splitting into training and test sets. 


	 The input array will be a data frame composed of all the attributes under study, 

excluding the target variable and any of its direct attribute dependents. These attribute 

dependents are attributes which simulate or have an equivalent data value that strongly 

correlates to the target variable’s classification. 


#create input array (excluding target variable and its direct 
attribute dependents) 
x = marsis_processed.loc[:, 
~marsis_processed.columns.isin(['OccDeathClassID', 'TotalDeaths', 
'OccClassID', ‘ImoClassLevelID’])] 

	 The corresponding output array is a 1 dimensional data frame consisting only of the 

target variable, ‘OccDeathClassID’.


#create output array (including target variable) 
y = marsis_processed['OccDeathClassID'].to_frame() 

	 With input and output arrays separating the target variables from the input variables, 

one can use sklearn’s model_selection module to invoke a train_test_split() 

function to create training and testing data sets. Training sets are defined as x_train (with the 

input array attributes), and y_train (with the output array attribute). Similarly, the test sets are 

defined as x_test (with the input array attributes), and y_test (with the output array 

attribute). The split between training and testing sets is set at an 70/30 proportionality, with a 

stratified sampling technique whereby an approximately equal quantity of target attribute 

records are distributed amongst both training and testing sets.
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import numpy as np 
from sklearn.model_selection import train_test_split 
x_train, x_test, y_train, y_test = train_test_split( 
    x, y,  
    train_size = 0.7,  
    test_size = 0.3,  
    # random_state = 4, 
    stratify = y) 

One can verify with a subsequent command what the stratified sampling proportion 

approximates to. In this case, y_train has approximately 2.136% observations with a 

positive OccDeathClassID, and y_test has approximately 2.141% observations with a 

positive OccDeathClassID. 

#verify proportionality of stratification in output array 
y_train.dtypes 
stratified_y_train = len(y_train[y_train['OccDeathClassID'] == 1]) / 
len(y_train) 
print(stratified_y_train) 

Out[]: 0.021361000915471468 

stratified_y_test = len(y_test[y_test['OccDeathClassID'] == 1]) / 
len(y_test) 
print(stratified_y_test) 

Out[]: 0.021415889924545052 

Section 5: Formal Dimensionality Reduction 
	 Begin by loading Section 4 dependencies into the IDE:


import xgboost 
import numpy as np 
import seaborn as sns 
import sklearn.model_selection 
from matplotlib import pyplot 
from math import sqrt 

5.1 - Removing Attributes with High Correlations 
	 One of the selected methods of formal dimensionality reduction for this study is the 

identification and removal of highly correlated attributes in the already reduced feature set. 
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From the remaining attributes in the marsis_processed data frame, one can store the results 

of a correlation matrix to identify any directional relationships between the attributes. These 

directionalities are afterwards visualized as to easily identify them using a heatmap.


#verify if there are attributes that are too closely correlated and 
are dependents of the target variable 
attribute_correlation = marsis_processed.corr() 
sns.heatmap(marsis_processed.corr(), fmt='.2g',cmap= 'coolwarm') 

The strongest relationships identified include ‘OccClassID’ and ‘TotalDeaths’, which have 

already been removed from the training and testing split data. No further dimensionality 

reduction using this technique is appropriate given the results.
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5.2 - Dimensionality Reduction by Random Forests Ensemble 
	 In the processed dataset, many records contain NAs, and for some attributes’ records, 

imputing them with a value may not make the most sense. To enable any further dimensionality 

reduction, the simplest way to identify the most important features is to use a modelling 

algorithm that supports missing values. Given that scikitlearn models are not capable of 

dealing with missing values, one can opt for XGBoost models to accomplish this task with 

potentially better computational efficiency.


	 Given the previously calculated proportionality of stratified sampling with respecting to 

y_train and y_test class levels, it is evident that the MARSIS dataset is very imbalanced. 

Out of all the records from 1975 to 2022, only 2% on average have an incident attached to 

them resulting in a maritime fatality. To compensate for this imbalance, the XGBRFClassifier will 

use the hyperparameter scale_pos_weight to give greater weight to the target variable’s 

positive class. Ideally, the value of scale_pos_weight should correspond to the same 

proportionality of total negative samples to total positive samples. With this technique, one can 

mimic oversampling the data wherein the positive class is more prevalent. The hyperparameter 

scale_pos_weight will also be tweaked manually through the use of a floating point factor 

stored in a variable named tweaking_param.


#with XGBRFClassifier(), pass scale_pos_weight = x, where x is the 
total_negative_examples / total_positive_examples 

#use tweaking param to adjust scale_pos_weight impact on False 
Positive and False Negative results 
tweaking_param = 0.45 
estimate = ((len(y_train[y_train['OccDeathClassID'] == 0])) / 
(len(y_train[y_train['OccDeathClassID'] == 1]))) * tweaking_param 

	 An additional consideration that must be taken with the XGBRFClassifier is that it 

cannot support bootstrapping at each individual tree level in the random forest. To simulate 

bootstrapping, the subsample parameter in the model definition will serve to sample 80% of 
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the data specified - a sufficient amount to train the model on, while also introducing some 

variability into the ensemble. 


	 Lastly, a consideration needs to be made for how the model will designate node split 

points within the random forest. The optimal node splitting heuristic parameter can be 

calculated by the following formula:


#define the random forest ensembles model 
heuristic_parameter = sqrt(len(marsis_processed.columns)) / 
len(marsis_processed.columns) 
model = xgboost.XGBRFClassifier(n_estimators = 100, subsample = 0.8, 
colsample_bynode = heuristic_parameter, scale_pos_weight = estimate) 

The performance of the model on its validation data will be performed via repeated k-fold cross 

validation, with three repeats across 10 folds. 


#evaluate the model using repeated k-fold cross validation, with three 
repeats and 10 folds 
cv = sklearn.model_selection.RepeatedStratifiedKFold(n_splits=10, 
n_repeats=3, random_state=1) 

#evaluate the model and collect the scores 
n_scores = sklearn.model_selection.cross_val_score(model, x_train, 
y_train, scoring='accuracy', cv=cv, n_jobs=-1) 

#evaluate model accuracy by taking the mean of the cross validation 
scores, recording its standard deviation 
print('Mean Accuracy: %.2f (%.2f)' % (np.mean(n_scores), 
np.std(n_scores))) 

Out[]: 0.94 (0.00) 

Prior to applying the scale_pos_weight hyperparameter, the model’s accuracy was closer to 

99%, indicative of overfitting. After applying an appropriate value for scale_pos_weight, the 
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model’s accuracy is at 94% on the validation set, but its accuracy score alone cannot 

determine its ability to predict skillfully.


	 The model is ready to be fit to the training datasets using the following command:


#fit the random forests model to the training data 
model.fit(x_train, y_train) 

Having trained the model on the created training data sets, one is now able to extract the most 

important features contributing to an OccDeathClassID level. This is done by creating an 

importance matrix where the metric under consideration is the information gain of splits using 

each respective feature. This importance matrix is then visualized, showing the top 15 most 

importance features contributing to marine fatalities. The full importance matrix is also made 

available in a data frame named feature_importance_df.


#store feature importance 
feature_important = 
model.get_booster().get_score(importance_type='gain') 
keys = list(feature_important.keys()) 
values = list(feature_important.values()) 
feature_importance_df = pd.DataFrame(data=values, index=keys, 
columns=["score"]) 

#visualize feature importance 
xgboost.plot_importance(model, title = 'Top 15 Most Important Features 
in Fatality Occurrences', max_num_features = 15) 
pyplot.show() 
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Section 6: Model Building and Model Comparisons 

6.1 - Random Forests Ensemble: Model Building and Evaluation 
	 With the model built out and its most important features identified, one can test it on 

the previously created testing data sets. The next step is to pass the model the test data set 

and report on its accuracy.


#make predictions for test data and evaluate 
from sklearn.metrics import accuracy_score 

y_pred = model.predict(x_test) 
accuracy = accuracy_score(y_test, y_pred) 
print("Accuracy: %.2f%%" % (accuracy * 100.0)) 

Out[]: Accuracy: 94.53% 

For this run, the model maintains its same degree of accuracy as per the training data set. In 

addition to measuring accuracy, one can also create a classification report of the model’s 

performance using sklearn.metrics. 


#test and pred results 
from sklearn.metrics import classification_report 

print(classification_report(y_test, y_pred)) 
results_comparison = x_test.assign(target = y_test.values, prediction 
= y_pred) 

From the manually weighted random forests classification report, one evaluates the model 

using the following criterion:
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• The overall accuracy is strong, with 95% of instances predicted correctly by the model. 

However, given that the overall data set is very imbalanced, this is not the correct metric to 

be observing as a primary measure of success. Precision of positive classes is more 

important in measuring the overall performance of the model.


• The model’s precision score is maximized at 100% for negative classes, but its precision 

struggles for positive classes at 28%. Looking at the visualized confusion matrix below, one 

can infer that the model is returning many results, but with a great volume of incorrectly 

identified false-positives.


• The model has a high recall percentage of 97% on the positive class, whereby a large 

majority of the real positive cases are predicted as positives.


One can visualize the impact of the precision and recall metrics in a confusion matrix using 

pyplot.


#visualize test and pred results 
disp = sklearn.metrics.ConfusionMatrixDisplay.from_predictions( 
    y_test, 
    y_pred, 
    display_labels= ['Not Deadly', 'Deadly']) 
disp.ax_.set_title('Confusion Matrix for Random Forests') 
plt.show() 
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In the case of predicting marine occurrences that are likely to occur in deaths, having false 

positives may be indicative of a more overzealous model - something not to be seen as a 

negative, as it may prevent fatal marine accidents from occurring. Given the circumstances 

under study, false negatives are much more costly, potentially costing lives if disproportionate 

to true positives. Overall, the model’s performance is satisfactory, and is able to identify deadly 

and not deadly scenarios effectively, while identifying false positives 5.4% of the time.


	 Lastly, the model’s receiver operating characteristics (ROC) curve is plotted, with 

calculated area under curve (AUC) values appended to the visualized plot.


#visualize ROC AUC 
fpr, tpr, _ = sklearn.metrics.roc_curve(y_test, y_pred) 
auc = sklearn.metrics.roc_auc_score(y_test, y_pred) 

plt.plot(fpr,tpr,label="AUC="+str(auc)) 
plt.ylabel('True Positive Rate') 
plt.xlabel('False Positive Rate') 
plt.legend(loc=4) 
plt.suptitle('ROC Curves for Weighted Random Forest') 
plt.show() 
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From the generated ROC curve, one can deduce that the model has a good measure of 

separability, while introducing type 1 and type 2 errors about 4% of the time. This is a good 

measure of the overall model’s performance, distinguishing correctly between positive and 

negative OccDeathClassID instances approximately 96% of the time.


6.1.1 - Redefining the Random Forests’ Optimal Weighting using Grid 
Search 
	 In section 6.1, the model was tested upon a configuration where the hyperparameter 

scale_pos_weight was set to a value based on manual experimentation in an attempt to 

correctly weight the balance of positive class incidents. However, this manually selected value 

may not be the optimal value for the model’s performance, and it needs to be checked against 

an algorithmically selected weighting value. 


	 While the initial configuration leaned on the formula of scale_pos_weight = 

total_negative_examples / total_positive_examples, another approach to 

determine weighting values involves the use of a grid search. With this configuration, the model 

adopts weightings based on a grid of specified parameter values. 


# 5.1.1 - Redefine the Model's Optimal Weighting using Grid Search 
from sklearn.model_selection import GridSearchCV 

#define grid weights and parameters 
weights = [0.1, 0.25, 0.5, 0.75, 1, 10, 25, 50, 75, 100] 
param_grid = dict(scale_pos_weight=weights) 

	 The model is then evaluated using the same k-fold cross validation parameters as seen 

in section 5.2.


#evaluate the model using repeated k-fold cross validation, with three 
repeats and 10 folds 
cv = sklearn.model_selection.RepeatedStratifiedKFold(n_splits=10, 
n_repeats=3, random_state=1) 

	 The model is then iteratively evaluated using the defined grid search parameters, this 

time scoring itself on the area under its receiver operating characteristic curve.
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#define grid search execution 
grid = GridSearchCV(estimator=model, param_grid=param_grid, n_jobs=-1, 
cv=cv, scoring='roc_auc') 
grid_result = grid.fit(x_train, y_train) 

	 The optimal configuration is printed to the console, displaying the best AUC score, 

along with the grid parameter values that allowed the model to reach that best AUC score. 

Iteratively, the rest of the parameter values are evaluated in the model, printing out their 

respective results to the console.


#report the best configuration 
print("Best: %f using %s" % (grid_result.best_score_, 
grid_result.best_params_)) 

# report all configurations 
means = grid_result.cv_results_['mean_test_score'] 
stds = grid_result.cv_results_['std_test_score'] 
params = grid_result.cv_results_['params'] 
for mean, stdev, param in zip(means, stds, params): 
    print("%f (%f) with: %r" % (mean, stdev, param)) 
 

In this run, it appears that the best scale_pos_weight determined was a value of 10 from 

the pre-specified grid parameter values. The model is now redefined based off the weightings 

to account for this optimal hyperparameter value:
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#redefine the model given best defined weighting 
model = xgboost.XGBRFClassifier(n_estimators = 100, subsample = 0.8, 
scale_pos_weight = (list(grid_result.best_params_.values())[0])) 

The model is then subsequently fit on the training data, and evaluated on the test sets created 

earlier, with the exact same procedure displayed in section 6.1.


#fit the random forests model to the training data 
model.fit(x_train, y_train) 

#make predictions for test data and evaluate 
from sklearn.metrics import accuracy_score 
y_pred = model.predict(x_test) 
accuracy = accuracy_score(y_test, y_pred) 
print("Accuracy: %.2f%%" % (accuracy * 100.0)) 

#test and pred results 
#accuracy score 
from sklearn.metrics import accuracy_score 
print(accuracy_score(y_test, y_pred)) 

#classification report 
from sklearn.metrics import classification_report 
print(classification_report(y_test, y_pred)) 
results_comparison = x_test.assign(target = y_test.values, prediction 
= y_pred) 
 

The generated classification report displays a 98.97% accuracy based on the test data sets 

created. This is an improvement from the 94.53% reported in the manually-weighted variant of 

the model. More importantly, the recall metric for positive classes has increased substantially, 
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from 0.28 in the manual model, to 0.69 in the optimally-weighted model. This is a large 

increase in the amount of predictions of positive classes correctly identified. However, they do 

not come without a cost, and the following visualizations show why the type 1 and type 2 

errors are more concerning in this optimally-weighted model.


#visualize test and pred results 
disp = sklearn.metrics.ConfusionMatrixDisplay.from_predictions( 
    y_test, 
    y_pred, 
    display_labels= ['Not Deadly', 'Deadly']) 
disp.ax_.set_title('Confusion Matrix for Weight Optimized Random 
Forests') 
plt.show() 

	 As per the generated classification report, one can see that the overall volume of true 

positive predictions made by the optimally-weighted model is much higher. In addition, there is 

a substantial decrease in the amount of false positives reported - a decrease of 75% in false 
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positives. This improvement is accompanied by a 200% increase in the amount of false 

negatives reported, making the model much more dangerous if it were pushed into production. 	


	 Having a false positive is acceptable in the model because if an occurrence is predicted 

as deadly, but in fact is not, there is no loss of life associated with it. There are other 

considerations with a higher false positive prediction rate, such as the time and monetary cost 

in sending out coast guard personnel to verify the incident and make sure no one is under 

deadly peril. In this case, the primary ethical consideration ought to heavily penalize false 

negatives, by which no alarm is sounded for a deadly incident, and lives are put at risk for the 

sake of saving time, money, or other resource.


#visualize ROC AUC 
fpr, tpr, _ = sklearn.metrics.roc_curve(y_test, y_pred) 
auc = sklearn.metrics.roc_auc_score(y_test, y_pred) 

plt.plot(fpr,tpr,label="AUC="+str(auc)) 
plt.ylabel('True Positive Rate') 
plt.xlabel('False Positive Rate') 
plt.legend(loc=4) 
plt.suptitle('ROC Curves for Weight Optimized Random Forest') 
plt.show() 
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The generated ROC AUC plot for the optimally-weighted random forests 
model.



6.1.2 - Creating a Balanced Random Forests Algorithm 
	 While the previously created random forests model attempted to account for the data 

imbalance using the scale_pos_weight hyperparameter, one more approach that may yield 

viable results is adjusting the algorithm that accounts for the data imbalance out of the box. 

This adjustment comes in the form of the BalancedRandomForestClassifier class originating 

from the imbalance-learn library package available via PyPi . The classifier model in this 12

case resamples the data under study in order to directly reflect the class distribution for 

OccDeathClassID.


	 Notably, this model’s algorithm is incapable of dealing with NA values unlike XGBoost. 

Given this distinction, the remaining NA values in the initial training and testing data sets are 

saved to variant variables identifying that they are imputed value variables. Both test and 

training NAs are imputed with the mean of the values per attribute. 


##since imbalanced-learn models cannot handle NANs like XGBOOST, use 
an imputation method for NANs 
learning_sets = [x_train, y_train] 
for set in learning_sets: 
    set.apply(pd.to_numeric, errors = 'coerce') 
test_sets = [x_test, y_test] 
for set in test_sets: 
    set.apply(pd.to_numeric, errors = 'coerce') 

imp_x_train = x_train.copy(deep=True) 
imp_x_train.fillna(imp_x_train.mean(), inplace = True) 

imp_x_test = x_test.copy(deep=True) 
imp_x_test.fillna(imp_x_test.mean(), inplace = True) 

imp_y_train = y_train.copy(deep=True) 
imp_y_train.fillna(imp_y_train.mean(), inplace = True) 
imp_y_train = np.ravel(imp_y_train) 

imp_y_test = y_test.copy(deep=True) 
imp_y_test.fillna(imp_y_test.mean(), inplace = True) 
imp_y_test = np.ravel(imp_y_test) 

 Lemaitre, G., & Aridas, C. (2022, May 22). imbalanced-learn 0.9.1. PyPi. Retrieved from https://pypi.org/12

project/imbalanced-learn/
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Once imputation of mean values is complete, the package is imported with the balanced 

classifier model. The imputed training and testing data sets are used for this implementation, 

and the results are visualized with the same procedures shown in section 6.1 and 6.1.1.


#evaluate the model using repeated k-fold cross validation, with three 
repeats and 10 folds 
cv = sklearn.model_selection.RepeatedStratifiedKFold(n_splits=10, 
n_repeats=3, random_state=1) 

#evaluate the model and collect the scores 
scores = sklearn.model_selection.cross_val_score(model, imp_x_train, 
imp_y_train, scoring='roc_auc', cv=cv, n_jobs=-1) 
print('Mean ROC AUC: %.3f' % np.mean(scores)) 

#fit the random forests model to the training data 
balanced_model.fit(imp_x_train, imp_y_train) 

#make predictions for test data and evaluate 
y_balanced_pred = balanced_model.predict(imp_x_test) 
balanced_accuracy = accuracy_score(imp_y_test, y_balanced_pred) 
print("Accuracy: %.2f%%" % (balanced_accuracy * 100.0)) 

#test and pred results 
#accuracy metrics 
from sklearn.metrics import accuracy_score 
print(accuracy_score(imp_y_test, y_balanced_pred)) 

#classification report 
from sklearn.metrics import classification_report 
print(classification_report(imp_y_test, y_balanced_pred)) 
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The generated classification report for the balanced random forests model.



This model is very similar in its performance to the manually selected weighting variant created 

in section 6.1. Accuracy, recall, and precision metrics are on-par with the manual model, with 

potentially similar weighting values being assigned to both balanced and manually-weighted 

models. The model’s performance is subsequently visualized using the same procedures in 6.1 

and 6.1.1.


#visualize test and pred results 
disp = sklearn.metrics.ConfusionMatrixDisplay.from_predictions( 
    imp_y_test, 
    y_balanced_pred, 
    display_labels= ['Not Deadly', 'Deadly']) 
disp.ax_.set_title('Confusion Matrix for Balanced Random Forest') 
plt.show() 
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The generated confusion matrix for the balanced random forests model.



The balanced model is much more overzealous in its classification of false negatives than the 

manually weighted model variant. This comes at the expense of a large increase of 66.7% in 

false positive predictions, which in the case of marine safety, may be difficult to justify the 

costs associated with the model’s use in production. Out of the variant models created thus far, 

this variant is the one that is the most safe, and minimizes the amount of deadly incidents 

which could be ignored due to classification errors.


#visualize ROC AUC 
fpr, tpr, _ = sklearn.metrics.roc_curve(imp_y_test, y_balanced_pred) 
auc = sklearn.metrics.roc_auc_score(imp_y_test, y_balanced_pred) 

plt.plot(fpr,tpr,label="AUC="+str(auc)) 
plt.ylabel('True Positive Rate') 
plt.xlabel('False Positive Rate') 
plt.legend(loc=4) 
plt.suptitle('ROC Curves for Balanced Random Forest') 
plt.show() 
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The generated ROC AUC plot for the balanced random forests model.



6.1.3 - Comparison of Random Forest Model Variants 
	 To conclude the analysis of the random forest model variants, one can plot the 

compiled ROC AUC curves for each respective model and compare their performance given 

the context of the study.


#plot comparison figure 
for i in result_table.index: 
    plt.plot(result_table.loc[i]['fpr'],  
             result_table.loc[i]['tpr'],  
             label="{}, AUC={:.3f}".format(result_table.loc[i]
['classifiers'], result_table.loc[i]['auc'])) 
     
plt.plot([0,1], [0,1], color='grey', linestyle='--') 
plt.xlabel("False Positive Rate") 
plt.ylabel("True Positive Rate") 
plt.title('ROC Curve Analysis') 
plt.legend(loc=4) 
plt.show() 
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The combined ROC AUC plots for the random forest models under study.



	 From the results displayed in the ROC Curve Analysis, all three models are performant 

with respect to overall accuracy and ability to discern positive classifications from negative 

classifications in predictions effectively. The weight-optimized random forests model is the 

most dangerous of the group to implement in actuality due to its propensity to not penalize 

false negatives as strictly; potentially resulting in fatal marine occurrences not being identified 

as being deadly. 	 	 


	 Conversely, both the manually weighted random forest and the balanced random forest 

models are very similar, and even share the same AUC score values. Despite their similarities, 

the balanced random forest algorithm tends to be overzealous in its penalization of false 

negatives, skewing the overall predictions heavily towards a greater volume of false positives. 

While this affects the recall of the model in a negative way - and is likely best for minimizing as 

many potentially fatal occurrences from being overlooked - it is improbable that this model 

would be implemented by the Transportation Safety Board of Canada. With the amount of false 

positives returned by the balanced random forest model, type-1 errors would cost the TSB in 

the long term. Too many instances of false positives would require marine staff to investigate 

many occurrences without in a fatality, and by continuously making an error, it is likely that the 

model’s trust would be eroded, despite saving lives through its application. As such, it appears 

the best random forest model available under study is the manually weighted one.


6.2 - Weighted Logistic Regression: Model Building and Evaluation 
	 In order to contrast against the results coming from a more complicated model 

structure such as random forests, a logistic regression model is also experimented with in 

order to derive an answer to the hypothesis under study. The logistic regression algorithm used 

as part of this experiment will be one originating from the scikitlearn package. Similarly to 

the previously enacted balanced random forests classifier, the logistic regression algorithm is 

incapable of dealing with NA values, and consequently will also use the imputed test and train 

variables previously declared in section 6.1.2.


	 	 	 	 Page 50



	 The same issue of imbalanced data persists with the logistic regression model, whereby 

class weighting parameters must be assigned to account for the imbalance. The 

hyperparameter under study for the logistic regression model in scikitlearn is 

class_weight, where a dictionary value is passed specifying the class weightings when 

evaluating the model. The heuristic value applied to class_weight is the inverse of the class 

distribution of the data set at hand. In the case of the segmented training and test data, this 

involves a relative class weighting ratio of 2.1361 to the negative OccDeathClassID paired 

with a relative class weighting ratio of 97.8639 to the positive OccDeathClassID. 

	 Notably, given the amount of variables as part of both the training and test data sets, 

evaluation of the model may fail to converge due to an increased volume of ill-fitting 

observations. As a mitigating parameter, the maximum number of iterations for the logistic 

regression before a maximum likelihood estimate exists is capped at 10,000 iterations, 

increasing computation time quite significantly.


#define the logistic regression model 
#account for unbalanced dataset as in XGBOOST using class_weight 
hyperparameter 
w = {0:2.1361, 1:97.8639} 
log_model = LogisticRegression(random_state=4, class_weight=w, 
max_iter=10000) 

The model may throw convergence warnings, which can be hidden from the console using the 

following command:


#optional: hide ConvergenceWarnings for logistic regression output 
import warnings 
from sklearn.exceptions import ConvergenceWarning 

with warnings.catch_warnings(): 
    warnings.simplefilter("ignore", category=ConvergenceWarning) 

Afterwards, the same method of evaluation and visualization is applied to the weighted logistic 

regression model as seen in the random forests variants in sections 6.1, 6.1.1, and 6.1.2.
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#evaluate the model using repeated k-fold cross validation, with three 
repeats and 10 folds 
cv = sklearn.model_selection.RepeatedStratifiedKFold(n_splits=10, 
n_repeats=3, random_state=1) 

#evaluate the model and collect the scores 
n_log_scores = sklearn.model_selection.cross_val_score(log_model, 
imp_x_train, imp_y_train, scoring='accuracy', cv=cv, n_jobs=-1) 

# report performance 
print('Mean Accuracy: %.2f (%.2f)' % (np.mean(n_log_scores), 
np.std(n_log_scores))) 

#fit the model to the training data 
log_model.fit(imp_x_train, imp_y_train) 

#make predictions for test data and evaluate 
y_log_pred = log_model.predict(imp_x_test) 
log_accuracy = accuracy_score(imp_y_test, y_log_pred) 
print("Accuracy: %.2f%%" % (log_accuracy * 100.0)) 

#test and pred results 
#accuracy metrics 
from sklearn.metrics import accuracy_score 
print(accuracy_score(imp_y_test, y_log_pred)) 

#classification report 
from sklearn.metrics import classification_report 
print(classification_report(imp_y_test, y_log_pred)) 
 

	 The overall accuracy for the model concludes with a value of 86.15%, notably worse 

than any of the afore tested random forests algorithms. Precision for the positive class 
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The generated classification report for the weighted logistic regression model.



struggles significantly, with an approximate 50% drop in precision score when compared to the 

random forests algorithms.


#visualize test and pred results 
disp = sklearn.metrics.ConfusionMatrixDisplay.from_predictions( 
    imp_y_test, 
    y_log_pred, 
    display_labels= ['Not Deadly', 'Deadly']) 
disp.ax_.set_title('Confusion Matrix for Logistic Regression') 
plt.show() 

	 As expected, the logistic model’s drop in recall also suggests that it makes more type 1 

and type 2 errors. Fortunately, a lot of the errors made by the model are type 1 errors. 

Influenced heavily by the imbalanced data under consideration, the logistic regression skews 

towards the result most associated with the most common class in OccDeathClassID. To 

conclude, with many errors on both false positive and false negative ends, this model cannot 

compare in performance to the random forests created earlier, and manages a respectable 

AUC value of 0.89.
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The generated confusion matrix for the weighted logistic regression model.



#visualize ROC AUC 
fpr, tpr, _ = sklearn.metrics.roc_curve(imp_y_test, y_log_pred) 
auc = sklearn.metrics.roc_auc_score(imp_y_test, y_log_pred) 

plt.plot(fpr,tpr,label="AUC="+str(auc)) 
plt.ylabel('True Positive Rate') 
plt.xlabel('False Positive Rate') 
plt.legend(loc=4) 
plt.suptitle('ROC Curves for Weighted Logistic Regression') 
plt.show() 

Lastly, the feature importance of the logistic regression classifier is calculated and visualized 

using the following command:


#logistic regression variable importance 
log_importance = pd.Series(log_model.coef_[0], index = 
imp_x_test.columns) 
log_importance = log_importance.sort_values(ascending=False) 
log_importance.nlargest(15).plot(kind = 'barh', title = 'Weighted 
Logistic Regression Feature Importance') 
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The generated ROC AUC plot for the weighted logistic regression 
model.



6.3 - Naive Bayes Classifier: Model Building and Evaluation 
	 Lastly, the final model under experimentation is a Naive Bayes classifier, also originating 

from the scikitlearn package. Given the assumption of Naive Bayes classifiers to assume 

input variables as being independent of other input variables, this model is expected to 

perform the poorest out of the selected models. Despite this, a predictive model of this type 

was taken into consideration to provide diversity in the techniques under study, and to 

subsequently analyze the efficacy of a conditional probability model given the original data set.


	 Similarly to the previously enacted weighted logistic regression model, the Naive Bayes 

algorithm is incapable of dealing with NAN values, and consequently will also use the imputed 

test and train variables previously declared in section 6.1.2.


from sklearn.naive_bayes import GaussianNB 

#define the naive bayes model 
nb_model = GaussianNB() 
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Top 15 most important features by logistic regression coefficient.



	 The same method of evaluation and visualization is applied to the Naive Bayes model 

as seen in sections 6.1, 6.1.1, 6.1.2, and 6.2.


#evaluate the model using repeated k-fold cross validation, with three 
repeats and 10 folds 
cv = sklearn.model_selection.RepeatedStratifiedKFold(n_splits=10, 
n_repeats=3, random_state=1) 

#evaluate the model and collect the scores 
n_nb_scores = sklearn.model_selection.cross_val_score(nb_model, 
imp_x_train, imp_y_train, scoring='accuracy', cv=cv, n_jobs=-1) 

# report performance 
print('Mean Accuracy: %.2f (%.2f)' % (np.mean(n_nb_scores), 
np.std(n_nb_scores))) 

#fit the model to the training data 
nb_model.fit(imp_x_train, imp_y_train) 

#make predictions for test data and evaluate 
y_nb_pred = nb_model.predict(imp_x_test) 
nb_accuracy = accuracy_score(imp_y_test, y_nb_pred) 
print("Accuracy: %.2f%%" % (nb_accuracy * 100.0)) 

#test and pred results 
from sklearn.metrics import classification_report 
print(classification_report(imp_y_test, y_nb_pred)) 
 

	 Given the complexity of the number of variables as part of the training and testing data 

sets, the Naive Bayes classifier was not expected to perform better than the afore tested 

models under study. There are likely interactions between the variables that are not identified in 
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The generated classification report for the Naive Bayes model.



the model, and the sheer volume of variables as part of the training and testing data sets 

makes this model struggle with recall, precision, and accuracy. With regards to precision for 

the positive class, it performs exceptionally poorly and one is better off guessing the results of 

the marine occurrence rather than relying on this model. This poor performance is supported 

by the ROC AUC score of 0.611, just marginally higher than the 0.5 threshold whereby the 

classifier cannot distinguish between positive and negative class associations.


#visualize test and pred results 
disp = sklearn.metrics.ConfusionMatrixDisplay.from_predictions( 
    imp_y_test, 
    y_nb_pred, 
    display_labels= ['Not Deadly', 'Deadly']) 
disp.ax_.set_title('Confusion Matrix for Naive Bayes') 
plt.show() 
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The generated confusion matrix for the Naive Bayes model.



#visualize ROC AUC 
fpr, tpr, _ = sklearn.metrics.roc_curve(imp_y_test, y_nb_pred) 
auc = sklearn.metrics.roc_auc_score(imp_y_test, y_nb_pred) 

plt.plot(fpr,tpr,label="AUC="+str(auc)) 
plt.ylabel('True Positive Rate') 
plt.xlabel('False Positive Rate') 
plt.legend(loc=4) 
plt.suptitle('ROC Curves for Naive Bayes') 
plt.show() 

Given the poor performance of the Naive Bayes model, its feature importance data will not be 

calculated and will not be taken into further consideration.


Section 7: Grouped Model Evaluations 
	 After training, fitting, and testing of three random forest model variants, a weighted 

logistic regression, and a Naive Bayes classifier, the cumulative plot of ROC curves is displayed 

using the following command, drawing from a data frame variable housing model results 

named result_table.
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The generated ROC AUC plot for the Naive Bayes model.



#plot comparison figure 
for i in result_table.index: 
    plt.plot(result_table.loc[i]['fpr'],  
             result_table.loc[i]['tpr'],  
             label="{}, AUC={:.3f}".format(result_table.loc[i]
['classifiers'], result_table.loc[i]['auc'])) 
     
plt.plot([0,1], [0,1], color='grey', linestyle='--') 
plt.xlabel("False Positive Rate") 
plt.ylabel("True Positive Rate") 
plt.title('ROC Curve Analysis') 
plt.legend(loc=4) 
plt.show() 

	 From the cumulative ROC curve analysis, one can conclude that the random forests 

algorithms are superior in their ability to distinguish between positive and negative classes 

accurately in their predictions. Both the weighted logistic regression and the Naive Bayes 

classifiers struggle with precision in predicting the positive OccDeathClassID. More 

specifically, once can discern the following:
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• Random Forests Model Variants 

• Manually Weighted Random Forest: Has high accuracy and recall for both 

OccDeathClassID classifications in prediction. Suffers from precision in the 

positive predicted classification, and has a slight bias in its prediction towards 

the majority negative class in the form of type-1 errors. This is the most 

acceptable model given its propensity to retain an acceptable proportion of 

type-1 errors relative to true positives, all the while minimizing type-2 errors 

within acceptable thresholds.


• Optimally Weighted Random Forest: Has high accuracy and recall for both 

OccDeathClassID classifications in prediction. Does not suffer from poor 

precision in the positive predicted classification, and minimizes bias in its 

prediction towards the majority negative class in the form of few type-1 errors. 

Unfortunately, this model offsets the reduced type-1 errors with additional type-2 

errors, which cannot be accepted given the context under study.


• Balanced Random Forest: Has high accuracy and recall for both 

OccDeathClassID classifications in prediction. Suffers from precision in the 

positive predicted classification, and has a considerable bias in its prediction 

towards the majority negative class in the form of type-1 errors. Loses out to the 

manually weighted random forests variant due to slightly lower accuracy, and 

marginally lower precision in identifying positive classifications correctly. Can be 

considered an overzealous model due to its likelihood of accepting a higher 

type-1 error threshold, but may be a candidate for production if the sole goal of 

the study is to minimize marine fatality occurrences.


• Weighted Logistic Regression: Suffers from poor precision in predicting the positive 

target class. Computationally expensive as many iterations need to be considered 

before a maximum likelihood estimate can be calculated. AUC value of 0.851 confirms 
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the model is more than capable of differentiating between positive and negative target 

classes, but makes more type-1 errors than acceptable for production.


• Naive Bayes Classifier: Suffers from exceptionally poor precision in predicting the 

positive target class. Least computationally expensive model under consideration. AUC 

value of 0.611 confirms the model is marginally better than guessing the fatality 

outcome of a marine occurrence. Not recommended for additional consideration given 

the complexity of inter-variable interactions that the model is incapable of identifying.


The three model groupings’ accuracy scores are visualized using the following command: 

#store validation results in variables 
results = [] 
results.append(n_scores) 
results.append(n_log_scores) 
results.append(n_nb_scores) 

model_names = ['Random Forests', 'Logistic Regression', 'Naive Bayes'] 

#plot results to boxplot 
fig = plt.figure() 
fig.suptitle('Comparison of Algorithm Accuracy') 
ax = fig.add_subplot(111) 
plt.boxplot(results) 
ax.set_xticklabels(model_names) 
plt.show() 
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Final comparison of accuracy scores pertaining to each predictive model 
family.



Section 8: Conclusions 
	 This study used several modelling techniques to accurately determine the relationship 

between key factors involved in Canadian marine occurrences and their contribution to marine 

accident fatalities. This study employed the use of three separate random forests algorithms, 

one weighted logistic regression, and one Naive Bayes classifier in order to determine the most 

appropriate model for predicting the positive target OccDeathClassID variable. Of the 

models under study, the Random Forests algorithm with a manually-specified class weighting 

hyperparameter was the most likely candidate in efficient prediction. Given its propensity to 

predict more accurately than other models, its feature importance set provides an 

understanding of the variables most conducive to a fatal marine occurrence in Canadian 

waters. 


	 The top 5 influential attributes contributing to a marine accident fatality are ranked 

below in a descending fashion:


1. InjuriesIND (Injuries Indicator) - Indicates whether the occurrence resulted in any injuries 

2. AccIncTypeID (Accident/Incident Type) - The type of accident or incident 

3. Length_Meters (Length, in Meters) - The length of the vessel involved in the marine 

incident, in Meters 

4. OccurrenceTypeID (Occurrence Type) - Indicates whether the occurrence was an accident 

or reportable incident 

5. DamageIND (Damage Indicator) - Indicates whether there was any damage to the vessel 

involved in the marine incident


	 There are two primary limitations regarding the approach offered in the study. Firstly, the 

validity of the data’s completeness is brought under question given the high proportion of 

missing data in the features that were selected. Given additional time and consideration, a 

better method of imputation of NANs could be devised that does not rely on the mean of 
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encoded values. Secondly, it is possible that the accuracy of the data may be compromised to 

an undecipherable extent given the TSB’s data reporting standards having the board report on 

itself. With no third party overseeing the recording processes and their accuracy’s, some 

occurrence data may be underreported or reported incorrectly.
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Github Repository 
All relevant project files can be found at https://github.com/rfinatan/CIND-820-Big-Data-

Analytics-Project.
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